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Computing Network Coordinates in the Presen
e ofByzantine FaultsbyYou ZhouSubmitted to the Department of Ele
tri
al Engineering and Computer S
ien
eon May 23, 2008, in partial ful�llment of therequirements for the degree ofMaster of Engineering in Ele
tri
al Engineering and Computer S
ien
eAbstra
tNetwork 
oordinate systems allow for e�
ient 
onstru
tion of large-s
ale distributedsystems on the Internet. Coordinates provide lo
ality information in a 
ompa
t way,without requiring ea
h node to 
onta
t every potential neighbor; distan
es betweentwo nodes' 
oordinates represent estimates of the network laten
y between them.Past work on network 
oordinates has assumed that all nodes in the system behave
orre
tly. The te
hniques in these systems do not behave well when nodes are Byzan-tine. These Byzantine failures, wherein a faulty node 
an behave arbitrarily, 
an makethe 
oordinate-based distan
e estimates meaningless. For example, a Byzantine node
an delay responding to some other node, thus distorting that node's 
omputation ofits own lo
ation.We present a network 
oordinate system based on landmarks, referen
e nodes thatare used for measurements, some of whi
h may be Byzantine faulty. It s
ales linearlyin the number of 
lients 
omputing their 
oordinates and does not require ex
essivenetwork tra�
 to allow 
lients to do so. Our results show that our system is able to
ompute a

urate 
oordinates even when some landmarks are exhibiting Byzantinefaults.Thesis Supervisor: Barbara LiskovTitle: Ford Professor of Engineering
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Chapter 1
Introdu
tion
1.1 MotivationNodes in a system distributed a
ross the Internet have no inherent measure of theirproximity to ea
h other, but by 
ommuni
ating with nearby nodes, they may be ableto redu
e 
ommuni
ation 
osts. Assuming bandwidth does not represent a bottlene
k,nodes 
an a
tively ping other nodes to determine the laten
ies or round-trip timesto other nodes; however, doing so for thousands of nodes 
an be 
ostly and mayoutweigh any derived bene�t. Network 
oordinates are a 
ompa
t representation ofthis proximity information that 
an avoid su
h 
osts.Network 
oordinates are an embedding of nodes into a metri
 spa
e, with thedistan
e between nodes in the spa
e representing the round-trip time between them.Typi
ally, a node will make some small number of measurements to other nodes inorder to determine its own 
oordinates. When all the nodes in the system behave
orre
tly, the resulting 
oordinates 
an predi
t network laten
ies a

urately [14, 31℄.To be useful, 
oordinates for a node must have a low error, de�ned as the di�eren
ebetween the a
tual and predi
ted round-trip times. However, things 
an go badly ifnodes in the system are trying to 
ompromise its e�e
tiveness. Atta
kers 
an tryto worsen the error for a 
orre
tly behaving node by distorting measurements, lyingabout their own 
oordinates, or 
ausing network delays. For example, in Vivaldi[6℄, a de
entralized 
oordinate system, even with only 10% of nodes in the system11



mali
iously 
olluding to disrupt the 
oordinates, the median average error 
an morethan double [13℄.1.2 Our 
ontributionsThe main problem our design addresses is that of faulty landmarks, the nodes towhi
h 
lients make measurements to 
ompute their own 
oordinates. We present anew system that allows 
orre
tly behaving 
lients to 
ompute a

urate 
oordinateseven if some of their measurements are faulty�the measured round-trip times maybe ina

urate or the landmarks may never respond.Our system prote
ts against a powerful Byzantine adversary that 
an 
ontrola fra
tion of the nodes in the system and 
oordinate them to behave arbitrarily.Additionally, our 
oordinate system is pra
ti
al: 
oordinates are 
ompa
t, they 
anbe e�
iently 
omputed by a node from its measurements to a set of landmarks, theyare easily translated into predi
tions for network laten
ies, and very little bandwidthoverhead is used for measurement.Results from our simulations show that even with measurements from Byzantinefaulty landmarks, our 
oordinate system provides 
lients with 
oordinates that arenearly as a

urate for predi
ting network laten
ies as they would have been had therenot been faults.1.3 Thesis outlineThe remainder of the thesis is organized as follows:Chapter 2 outlines the basi
 problems this thesis addresses and the design de
isionswe made.Chapter 3 provides de�nitions and groundwork for our system.Chapter 4 explains the proto
ol our system uses to 
ompute 
oordinates.Chapter 5 des
ribes our implementation, a simulation based on a
tual networkmeasurements, and our results. 12



Chapter 6 surveys prior resear
h in network 
oordinate systems, in
luding previousapproa
hes to mitigating error.Finally, Chapter 7 
on
ludes with our observations and dire
tions for future work.

13



14



Chapter 2
Approa
h
2.1 Design 
onsiderations2.1.1 Abstra
t modelThe abstra
t model of a network 
oordinate system 
onsists of nodes in the networkand the pairwise round-trip times, or distan
es, between them. It ignores heuristi
information, su
h as IP pre�xes, that might provide hints about whi
h nodes areproximate to ea
h other. Syntheti
 
oordinates, embedding the nodes into a 
oor-dinate spa
e, are then 
omputed from some measurements of the round-trip times,so that the distan
e between nodes is a predi
tion of the 
orresponding round-triplaten
y; 
oordinates are 
hosen to minimize some measure of error. The state of thenetwork at any given time re�e
ts the round-trip times measured at that time. Mostprevious work in the area of network 
oordinates [6, 32, 25, 21, 22, 29, 38, 34, 30℄follows this model.In network 
oordinate systems, a 
lient node may join and need to 
ompute its
oordinates, or it may need to maintain them to be a

urate over time. In the abstra
tmodel, to 
arry out this task, a 
lient uses measurements of the round-trip times tosome subset of the nodes in the system, referred to as its neighbors, and 
omputes(adjustments to) its own 
oordinates relative to the 
oordinates of its neighbors. Ifevery node uses the same set of neighbors, this set is 
alled the landmarks and the15



system is said to be a landmark system. Otherwise, it is 
onsidered a de
entralizedsystem.Some systems, su
h as Vivaldi [6℄, also use auxiliary information about the es-timated error in 
oordinates, so that a

urate 
oordinates in�uen
e ina

urate onesmore than vi
e versa.The 
oordinates, measurements, and other information must be a

urate in orderfor nodes to a

urately 
ompute 
oordinates and gain useful information about theproximity of other nodes but are easily distorted by an adversary trying to makethe system less useful. We designed our system to prote
t against as powerful anadversary as possible, for maximal generality. For the reasons des
ribed in the nextse
tion, we use a landmark-based approa
h rather than a de
entralized approa
h to
omputing network 
oordinates.2.1.2 Byzantine adversaryThe adversarial model we assume is based on Byzantine faults. A node experien
inga Byzantine fault 
an behave arbitrarily [4℄�it may stop responding, send spuriousmessages, delay messages, and so on. A Byzantine faulty node 
an a
tively try to
ompromise the 
orre
tness of the system.We assume a general, powerful Byzantine adversary that 
an 
oordinate all ofthe faulty ma
hines in the network to do its bidding. Additionally, the Byzantineadversary may introdu
e network delays for a bounded period of time and manipulatethe routing of pa
kets to distort distan
e both positively and negatively.2.1.3 FaultsHow 
an a Byzantine adversary atta
k 
orre
tly behaving nodes in the system? It
an do so prin
ipally by forging information given to other nodes or manipulating themeasurements other nodes make to mali
ious nodes.If a neighbor is faulty, it 
annot be relied upon to respond with its own 
oordinatesor auxiliary information 
orre
tly. It is easy for a mali
ious node to lie about its own16



A

B C

D

D′

EFigure 2-1: The 
entral node makes measurements to nodes A through E. A behaves
orre
tly. B does not respond. C delays messages, in
reasing the measured RTT. Dhas messages rerouted to D′, de
reasing the measured RTT. E responds 
orre
tly butis a�e
ted by network delay.state in response to requests that ask for it. And unfortunately, a proto
ol to verify aneighbor's 
oordinates using the neighbor's neighbors 
an be prohibitively expensive,espe
ially if that neighbor is also updating its own 
oordinates and 
annot be expe
tedto have the same 
oordinates from measurement to measurement.Furthermore, a neighbor will always be able to distort measurements made toit. Consider the measured round-trip time to be the elapsed time between a nodesending a message to its neighbor and its re
eiving a response. Figure 2-1 illustratesthe possible adversarial behavior:(B) The measured times 
an go to in�nity if message responses are dropped, asresponses never arrive.(C) The measured times 
an in
rease arbitrarily if message responses are intention-ally delayed.(D) The measured times 
an in
rease or even de
rease if messages are inter
epted17



and rerouted to a 
loser 
olluding ma
hine. This last, 
ounter-intuitive s
enariois further explained below.PuppeteerConsider a mali
ious node operated by an adversary that also 
ontrols routing forsome subnetwork 
ontaining it. This node 
an share its 
redentials with other ma-
hines in this subnetwork, allowing them to �impersonate� it. The border routersof this subnetwork 
an then redire
t tra�
 to the 
losest of these ma
hines. Thisadversary, whi
h we 
all a puppeteer, 
an thus a
t to de
rease distan
es measured tothis mali
ious node, even when the node's 
oordinates are a

urate and it does notmisrepresent its own 
oordinates. With su�
iently many puppets and enough 
ontrolover how pa
kets are routed, the distan
e may be de
reased arbitrarily.To our knowledge, this adversary has not been previously examined in the liter-ature. For example, Kaafar et al. assumed an atta
ker that only in
reases measuredtimes [13℄, and PIC assumed an adversary 
ould de
rease distan
es only down to thedistan
e to the nearest mali
ious node [5℄.Network delaysWe assume the atta
ker is able to introdu
e persistent network delays on some linksbetween a node and some neighbors (su
h as E in Figure 2-1), even if the neighbors arebehaving 
orre
tly. Measurements to these neighbors thus will be in
onsistent withthe original network round-trip times. However, we believe it is reasonable to expe
tnetwork damage to be repaired eventually, so that delays 
annot persist forever. Weaddress the problem of network delays in an extension to our work by adapting overtime in response to new measurements, as des
ribed in 4.4.1.2.1.4 LandmarksIt is 
lear that a Byzantine adversary able to misrepresent both the 
oordinates ofand measurements to nodes it 
ontrols is mu
h more dangerous than one that 
an18



only manipulate one of these pie
es of data. For this reason, we 
hose our system tobe a landmark system, in whi
h 
lient measurements are made only to a �xed set oflandmark nodes with published, stable 
oordinates: landmarks 
annot misrepresenttheir own 
oordinates and do not update them.Any distributed system 
an be set up to use landmarks. Sin
e landmarks areonly in infrequent 
ommuni
ation with all the 
lients in the system, they require onlya small amount of additional infrastru
ture. Ratnasamy et al. [26℄ observe that asingle landmark may even be repli
ated a
ross multiple ma
hines in one data 
enter.Geometri
 requirements on the positions of the landmarks are examined in se
tion3.2.3.2.2 GoalsOur system was designed to a
hieve 
ertain properties, some of whi
h are largelyde�ned by the role of a network 
oordinate system. These properties, as we formulatethem, are:A

ura
y: Our system should provide 
oordinates that predi
t network round-triptimes well.Fault toleran
e: Our system should provide reasonably a

urate 
oordinates tohonest 
lients even if some landmarks are Byzantine faulty or network delays
ause ina

urate measurements. Our 
oordinates should be a

urate even whenall faulty nodes in the system 
an 
ollude.Pra
ti
ality: Clients must be able to 
ompute their own 
oordinates in a reasonableamount of time. Landmarks should not have intensive 
omputational demandspla
ed on them.E�
ien
y: Sin
e the purpose of network 
oordinates is to redu
e the amount of
ommuni
ations overhead ne
essary to determine the proximity of other nodesin the network, our system should not impose ex
essive 
ommuni
ation burdens.19



S
alability: For the measurement overhead to grow linearly with the number of
lients in the system, ea
h 
lient should 
ommuni
ate with only a 
onstantnumber of nodes�the landmarks.Certi�ability: Our 
oordinates 
an be made self-
ertifying, so that other nodes 
anverify a 
lient's 
oordinates.

20



Chapter 3
Requirements
In this 
hapter, we present the basi
 assumptions and groundwork for our network
oordinates system.3.1 De�nitionsWe 
all 
lients the nodes that join the system and 
ompute their own 
oordinatesfrom measurements made to the landmarks.The system parameter f , known to all nodes in the system, spe
i�es how manyfaulty landmarks are tolerated. In addition to the L landmarks that are required to
ompute a

urate 
oordinates even if none of them are faulty, to tolerate f faults wein
lude an additional 2f landmarks. We des
ribe these parameters in more detailbelow.3.1.1 Base number of landmarksSuppose that no landmarks are faulty. While in theory, in a d-dimensional spa
e, only
d+1 landmarks are required to a

urately triangulate 
oordinates, due to the inherentembedding distortion, more are usually needed for a reasonable level of a

ura
y. We
all L the base number of requisite landmarks.Past work has studied the number of landmarks without settling on a de�nitive21



number for L. Ratnasamy et al. [26℄ found that 8 to 12 landmarks are su�
ientin a low-dimensional spa
e. Dabek et al. [6℄ found that the a

ura
y of GNP [21℄,a landmark-based 
oordinate system, did not signi�
antly in
rease beyond 16 land-marks, although the authors of GNP used 19 in their experiments. Tang and Crovella[32℄ used 11 and 12 landmarks for some other datasets, a

ording to what was avail-able.
3.1.2 Metri
 spa
eThe authors of Vivaldi [6℄ studied the e�e
ts of 
hoosing di�erent metri
 spa
es forthe 
oordinate embedding. One kind of spa
e, a 2-dimensional Eu
lidean spa
e to-gether with a height ve
tor representing the distan
e to the network 
ore that mostpaths to a node would have to traverse, was found to be more e�e
tive than either aEu
lidean spa
e in higher dimensions or a spheri
al spa
e. Later work by Ledlie etal. [15℄ 
on�rmed that 2-D spa
es with height ve
tor were more e�e
tive than higher-dimensional Eu
lidean spa
es for representing the topology of the Internet on severaldata sets.Following Vivaldi's results, we 
hose to use a 2-D Eu
lidean spa
e with heightve
tors for our implementation. A point in the spa
e is given as x = (x, y, h), withthe third 
oordinate representing the height (h ≥ 0). The pre
ise de�nition of thedistan
e metri
 is as follows:

d
(

(x1, y1, h1), (x2, y2, h2)
)

=
√

(x1 − x2)2 + (y1 − y2)2 + h1 + h2It is 
lear that this de�nition satis�es the metri
 spa
e axioms of symmetry andthe triangle inequality [27℄. Although the distan
e from a node to itself d(x,x) isnot 0 in general, this detail has no e�e
t in pra
ti
e be
ause a node never needs tomeasure the round-trip time to itself. 22



3.1.3 Byzantine fault toleran
eSin
e there is no way to determine when a landmark is Byzantine faulty, as it maybehave arbitrarily, when we 
ompute 
oordinates, we have no a priori way to de
idewhi
h measurements are the results of faults and should be ex
luded from the 
om-putation. Our approa
h will be to have the non-faulty landmarks outweigh the faultyones.Intuitively, be
ause in a d-dimensional spa
e, d measurements are insu�
ient tolo
ate a single point, the faulty landmarks may be able to agree in a region of the
oordinate spa
e where several honest landmarks also agree in hopes of 
ausing a
lient to 
hoose bad 
oordinates there. So f additional honest landmarks may beneeded to agree on the 
orre
t 
oordinate, and we suppose that L are ne
essary fora

urate 
oordinates in any 
ase. Thus, we 
hoose 2f +L for the number of landmarksused to tolerate f faults. While our 
hoi
e of 2f + L landmarks appears to su�
e, intheory, it may also be possible to have fewer landmarks beyond the f .
3.2 Landmark 
oordinates3.2.1 A

ura
yThe 
oordinates in our system are bootstrapped by the landmarks' published 
o-ordinates. We assume that the landmarks have a

urate, un
hanging 
oordinates.Coordinates that never 
hange are a reasonable simpli�ed model, sin
e we do notexpe
t network topologies to 
hange frequently.However, if topologies do 
hange over long periods of time, �xed 
oordinates,su
h as those of the landmarks, will not remain a

urate, and neither will the 
lient
oordinates that were 
omputed with them as referen
e points. However, this problemis orthogonal to that of 
omputing a

urate 
lient 
oordinates for honest 
lients, thefo
us of our work, so we do not 
onsider it here.23



3.2.2 Publi
ationA 
lient joining the system must have some me
hanism to dis
over the landmarks'published 
oordinates. Our system uses the idea of a dire
tory servi
e from Tor[8℄. We assume that the landmarks publish their IP addresses and 
oordinates in thedire
tory, and that it is easily a

essible to 
lients. The dire
tory 
ontains a 
erti�
ateauthority's publi
 key, whi
h the 
lient 
an use to verify the landmarks' publi
 keysin order to prevent a man-in-the-middle atta
k. We assume the dire
tory is not faultyand always has available the list of 
oordinates and IP addresses of all the landmarks,signed by the 
erti�
ate authority. (See se
tion 3.3 for the 
ryptographi
 assumptionswe require.)The dire
tory provides a trusted view of the landmarks in the system to 
lients. Itprevents landmarks that later be
ome faulty from reneging on their originally 
hosen,
orre
t 
oordinates.A dire
tory 
an represent a single point of failure and 
an be
ome a bottlene
k.The former problem 
an be solved using repli
ation�for example, by using PBFT[4℄. The latter is not problemati
 in our system be
ause we have only very limitedbandwidth demands on the dire
tory. Ea
h 
lient needs only to retrieve the land-marks' 
oordinates and one publi
 key, whi
h even for hundreds of landmarks shouldnot take up more than a few kilobytes. Alternative approa
hes to dis
overing the net-work, su
h as asking landmarks for a list of the other landmarks in the system, 
ano�oad some of the work from the dire
tory, but the dire
tory stills needs to providethe 
erti�
ate authority's publi
 key.3.2.3 DistributionThe a

ura
y of a landmark-based 
oordinate system depends on the relative positionof the landmarks in the 
oordinate spa
e. Two landmarks that are too 
lose to oneanother may not provide as mu
h dis
riminating information as they would if theyhad greatly di�ering paths a
ross the Internet to 
lients. Tang and Crovella [33℄showed that well-
hosen landmarks 
an signi�
antly redu
e the number of landmarks24



needed for the same level of error. Some other work 
onsiders [5, 16, 39℄ how landmarksele
tion di�erently a�e
ts the a

ura
y of predi
ting short and long distan
es.We assume that our landmarks 
an be 
hosen to be distributed a
ross data 
entersthat are separated geographi
ally and are pre-sele
ted out-of-band by the systemoperators to be well-distributed.3.3 CryptographyOur system requires a basi
 level of authenti
ity. A landmark signs the measurementmessages it sends, and the publi
 keys of the landmarks are all signed by a 
erti�
ateauthority whose publi
 key is available from the dire
tory servi
e. All signatures areassumed to be existentially unforgeable [10℄.We also in
lude non
es in all measurement messages to prevent replay atta
ks orspoofed replies from being able to a�e
t round-trip times. Some systems [5℄ assumethat non
es are su�
ient to guarantee the authenti
ity of message responses fromlandmarks, but we note the possibility of intermediate routers under the Byzantineatta
ker's 
ontrol that 
ould read the non
e.Our s
heme uses publi
 key 
ryptography, be
ause the 
ommuni
ations are soinfrequent that the 
ost of publi
 key 
ryptography is not too great. To set up ashared key using Di�e-Hellman key ex
hange [7℄ would require more round-trips andadditional messages, and the landmarks would have an additional resour
e burden ofat least temporarily storing a se
ret key for every 
lient.We assume our 
ryptographi
 primitives are unbreakable, treating them as a bla
kbox. We do not spe
ify any parti
ular 
ryptographi
 s
heme to be used, so long as itmeets our requirements.
25
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Chapter 4
Proto
ol for Computing Coordinates
This se
tion des
ribes the proto
ol for a 
lient to 
ompute its 
oordinates from s
rat
h.Our system begins with established landmark 
oordinates. Clients joining the system
ompute their 
oordinates from measurements to the landmarks. However, be
ausesome landmarks are faulty, we would like to prevent measurements to them fromdistorting our 
omputed 
oordinates; thus, we attempt to ex
lude responses fromfaulty landmarks.Ea
h 
lient 
an be 
onsidered in isolation, sin
e its 
ommuni
ations are only withthe landmarks. There are two phases in this proto
ol: First, the 
lient makes mea-surements to all of the landmarks. Then, on
e it has these measurements, it runs a
omputation to �nd its 
oordinates, eventually dis
arding some of the measurements.To de
ouple the measurements from the 
omputation step, we introdu
e an ab-stra
tion, the estimate, representing a 
lient's view over time of the round-trip laten
yto a landmark. The 
omputation step runs atop the estimate abstra
tion. Sin
e weassume that network laten
ies return to normal eventually, in the average 
ase wewill have an estimate for all landmarks.The system we implemented is a simpli�
ation that does not use estimates gleanedfrom many measurements over time, but instead a single measurement is used as theestimate. This simpli�
ation has the same properties ex
ept that it does not handlenetwork delays, as introdu
ed in se
tion 2.1.3; instead, it assumes that nodes a�e
tedby persistent delay are never heard from and thus faulty. It re�e
ts the 
lient's initial27



state upon joining, when it does not have prior histories for any landmarks and maybe unable to 
ompute its 
oordinates a

urately if it is a�e
ted by these networkfaults.
4.1 InitializationThe 
lient �rst obtains the list of landmarks and the 
erti�
ate authority's key fromthe dire
tory servi
e, and it veri�es the list's a

ura
y. Then it begins to measurethe round-trip times to the landmarks, using the landmark IP addresses from thedire
tory. The landmark 
oordinates from the dire
tory are used later, in the 
om-putation.
4.2 Measurement Proto
olA 
lient initiates a measurement to a landmark A by sending a ping message 
ontain-ing the 
lient's non
e, nonce1, to A. Upon re
eiving su
h a message, A responds witha pong message 
ontaining nonce1. This message is signed by A to prevent spoo�ngby an adversarial network. When the 
lient re
eives the pong, it veri�es that themessage 
ame from A and takes the elapsed time sin
e sending the ping message asthe measured round-trip time. In our simpli�ed system, this measurement is takendire
tly as the estimate that is used in the 
omputation.While an honest landmark will reply to the 
lient immediately, faulty landmarksmay a�e
t the measurements in a number of ways, as des
ribed in se
tion 2.1.3.Though landmarks 
annot lie about their 
oordinates, they 
an distort measurementsboth positively and negatively.Some faulty nodes may fail and never respond to measurements, so we also im-plement a timeout of approximately 800 millise
onds for ea
h measurement. Weassume that any laten
ies longer than this timeout do not 
orrespond to a

uratemeasurements and dis
ard them. 28



Compute-Coordinates(initial -coords, estimates)1 x← Gradient-Des
ent(initial -coords, estimates)2 ℓ← | estimates |3 while ℓ > f + L4 do estimates. remove(Estimate-with-Worst-Error(estimates))5 ℓ← ℓ− 16 x← Gradient-Des
ent(x, estimates)7 return xFigure 4-1: Pseudo
ode for the 
omputation. An estimate is removed and the 
oor-dinates are re
omputed, iteratively, until f + L remain.4.3 ComputationAfter obtaining estimates, of whi
h the 
lient will have up to 2f + L, and havinglearned the landmarks' published 
oordinates from the dire
tory, the 
lient 
omputesits own 
oordinates. Our proto
ol for 
omputing landmark-based 
oordinates removesup to f nodes from the 
omputation in
rementally.There are two issues to 
onsider:1. Given a set of estimates to landmarks, how are 
oordinates 
hosen to minimizethe error?2. Whi
h landmarks' estimates should be in
luded in the 
omputation of the
lient's 
oordinates?These aspe
ts of the 
omputation are referred to as the triangulation for sele
ting
oordinates and the strategy for sele
ting landmarks to use, respe
tively. We 
hoseto use a gradient des
ent for the triangulation step; it is run initially to in
lude allavailable estimates. Our strategy is to iteratively remove the estimate with the worsterror from the triangulation and re
ompute until only f + L landmark estimatesremain. Figure 4-1 shows a pseudo
ode des
ription of our algorithm.29



4.3.1 Error fun
tionSin
e the 
oordinate system is used to predi
t round-trip times between nodes, wede�ne the error in ea
h estimate as the ina

ura
y between the 
oordinate distan
e,or the predi
ted round-trip time, and the estimate, or the measured round-trip time.Let pi be the measured round-trip ping time from the 
lient to landmark i, whose
oordinates are xi = (xi, yi, hi) in the 2-D with height metri
 spa
e. For the individualerrors, we use the spring potential energy error fun
tion as de�ned in Vivaldi [6℄,
(d(x,xi)− pi)

2.The total error fun
tion is de�ned to be the average of the errors in the estimateto ea
h landmark. Thus, the average error at a point x = (x, y, h) is the average ofthe spring potential energies,
1

n

∑

i∈landmarks

(d(x,xi)− pi)
2 ,where n is the number of landmarks in the 
omputation. In a 2-dimensional withheight metri
 spa
e, this expression be
omes

1

n

∑

i∈landmarks

(

√

(x− xi)2 + (y − yi)2 + h + hi − pi

)2

.4.3.2 TriangulationIn the triangulation step, a set of estimates to landmarks and a starting point in the
oordinate spa
e is given as the input, and the output is a point in the 
oordinatespa
e that minimizes the error fun
tion for those landmarks. In this step, a 
lient �ndsthe 
oordinates x = (x, y, h) that minimize the energy fun
tion. The starting point
an be initially sele
ted randomly or �xed at the origin; for subsequent triangulationsteps, the triangulation 
an begin from the point 
omputed by the previous one.The problem of 
omputing the 
oordinates that minimize some error fun
tiondetermined by the estimates falls into the domain of un
onstrained nonlinear pro-gramming, a well-studied numeri
al problem in the literature [1, 35℄. The nonlinear30



optimization 
an be solved using a numeri
al method su
h as gradient des
ent, theNelder-Meade simplex algorithm (whi
h requires a starting simplex of n + 1 pointsin an n-dimensional spa
e), or simulated annealing [35℄. These te
hniques will �nd alo
al minimum, not ne
essarily a global minimum, of a potential fun
tion.We 
hose to use a gradient des
ent to �nd the 
oordinates in the triangulationstep. For gradient des
ent, we must �nd the gradient of the error fun
tion; sin
e theenergy fun
tion 
orresponds to spring potential energy, by Hooke's law, the �for
e�should 
orrespond to the spring for
e.While a gradient des
ent may be implemented to travel along the dire
tion of thegradient to a one-dimensional minimum on that line [35℄, we sa
ri�
e this level ofexa
tness for e�
ien
y and avoid solving this one-dimensional minimization problem.Our step size in the gradient des
ent is 
hosen to be proportional to the magnitude ofthe gradient of the error fun
tion. We �nd that the s
aling of 1/n from the averagingworks well, and our experiments do not show any 
onvergen
e failures, indi
ating thatour gradient des
ent is �nding a lo
al minimum as desired.4.3.3 StrategySin
e we would like to 
ompute a

urate 
oordinates, even when up to f landmarksare faulty, we will 
ompute 
oordinates from the estimates to only f + L landmarks.Thus, we remove landmarks from the triangulation 
omputation until only f + Lremain. Up to f landmarks will be removed�fewer than f if some landmarks arenever heard from and thus the 
lient has no estimate for them. Equivalently, we 
ansay that exa
tly f will not be in
luded in the �nal round of 
omputation, and thoselandmarks that are never heard from were removed to begin with.In the worst 
ase, when all 2f +L landmarks respond, �nding the subset of f +Lthat gives the absolute lowest error requires examining all (

2f+L

f

)

= O
(

(2f + L)f
)possible subsets, an exponentially large number (be
ause L is large, at least 10 or so).Hen
e, it is impra
ti
al for even small values of f , su
h as 4, be
ause the gradientdes
ent in the triangulation is not a 
heap 
omputation. Note that there is alsono guarantee that this optimal subset does not in
lude faulty landmarks. (Sin
e31



we do not evaluate 
oordinates' a

ura
y based on faulty landmarks, the optimal
oordinates for the 
lient should be 
omputed just with the estimates from the f + Lhonest landmarks, but sin
e the 
lient has no way of knowing whi
h landmarks arefaulty, the exponential-time strategy is the best it 
an hope to do.)Therefore, a 
lient 
annot pra
ti
ally �nd the absolute minimum over all possiblesubsets of f + L landmarks. A 
lient instead tries to �nd an appropriate subset oflandmarks that gives a low average error. To do so, we use intermediate triangulationsteps on 
ertain larger subsets.We use the following approximation. Given the 
oordinates 
omputed from antriangulation step, 
onsider the average error to ea
h landmark. That landmarkthat 
ontributes the most error is the one to be removed from the triangulation tode
rease the average error by the most, if the resulting 
oordinates are the same.However, the resulting 
oordinates should be di�erent, sin
e removing a landmarkwill 
hange the set of landmarks and thus the error fun
tion. To justify removing thislandmark with the worst error, the approximation we use is that the new 
oordinatesare approximately the old 
oordinates.We only remove one landmark at a time from the 
omputation be
ause the dis
rep-an
y between new error fun
tion and the old error fun
tion grows with the numberof landmarks' estimates removed from the error fun
tion. Our strategy thus takes atmost f + 1 rounds of the triangulation to 
ompute the �nal 
oordinates.Other strategiesWe also studied an alternative strategy, using O
(

(L + f)f
) rounds of triangulation.Again we iteratively remove one landmark's estimate from the triangulation at atime, but we sele
t that estimate di�erently. If we have n estimates left, then for ea
hestimate, we tentatively remove it, leaving n − 1 on whi
h to run the triangulation,and see what the resulting error is. The one that is a
tually removed is the one whoseremoval gave the lowest resulting error.Although this alternative strategy is provably better when f = 1, as it doesevaluate all possible subsets of size f + L and 
hoose the best one, we found that32



it does not perform as well for larger values of f . We 
onje
ture that it may bebe
ause, given a 
hoi
e between a region of 
oordinate spa
e agreed on by mainlyhonest landmarks and another region in a

ordan
e with mainly faulty landmarks, itis easier for the 
oordinate to wander toward one or the other, and hen
e to be
omelost in the faulty spa
e.Our strategy is thus a more pra
ti
al approa
h to 
omputing the 
oordinates thatminimize the average error.4.4 Extensions4.4.1 Estimate abstra
tionAs an extension to our system, to handle network faults, we dispense with the simpli-�
ation that measurements are identi�ed with estimates. Instead, ea
h 
lient main-tains, for ea
h landmark, its 
urrent estimate of the round-trip time to that landmark.The estimates are unde�ned before any measurements take pla
e. Estimates are up-dated by measurements to the landmarks and are used by the 
oordinate 
omputation.There are two reasons to de�ne this abstra
tion. First, there may be 
hanges tothe network topology over time, in
luding persistent network delays. Se
ond, jitter,the varian
e in network round-trip times due to queueing delays at routers, shouldnot unduly a�e
t how 
oordinates are 
omputed. Thus, the 
urrent estimate shouldbe able to adapt over time to re�e
t a new underlying round-trip time but shouldalso in
lude elements of a low-pass �lter.Our system aggregates measurements over time to form estimates using an expo-nential weighted moving average a

ording to
estimatei+1 = (1− α) · estimatei +α ·measurement i (4.1)for some small fra
tion α. This method is similar to the predi
tors used in other sys-tems; for example, TCP's retransmission timer uses an exponential weighted movingaverage to estimate a link's round-trip time [24℄.33



4.4.2 Certi�ability and faulty 
lientsWhile our system addresses the problem of preventing faulty landmarks from de-grading 
lients' 
omputed 
oordinates, it is also worth asking how to prevent 
lientsfrom 
hoosing arbitrary 
oordinates. After all, in a lo
ality-aware overlay network,mali
ious 
lients inserting themselves into the 
oordinate spa
e may make the 
ostof 
ommuni
ation more expensive for an appli
ation running atop the 
oordinatesby tri
king honest nodes, 
lose to the �
titious 
oordinates in the 
oordinate spa
e,into routing through them while they are in a
tuality far away, thereby defeating theoriginal purpose of the 
oordinates.Our 
oordinates 
an be made self-
ertifying with a small amount of additional
ommuni
ation that allows the landmarks to generate signed estimates for the 
lientsto 
olle
t. The landmarks also maintain estimates to the 
lients. These self-
ertifying
oordinates 
an be veri�ed independently by any other node in the system.To make measurements self-
ertifying, we modify the proto
ol as follows. Land-marks also in
lude a landmark non
e, nonce2, in their pong messages. On
e a 
lienthas an estimate, it 
an send a guess mesage to the landmark with nonce2 and its
urrent estimate, whi
h is derived from its previous estimate and the new measure-ment. The landmark veri�es that the 
lient's estimate is within some toleran
e of itsown. If it is, it replies with a 
he
k message in whi
h it signs the 
lient's estimate (itmust use publi
 key 
ryptography here in order for other nodes to be able to verifythe 
oordinates). The 
lient then 
olle
ts the signed estimates. The total number ofmessages is doubled from our original proto
ol.If the 
omputation of 
oordinates from the set of estimates is deterministi
, thenany node 
an 
ompute the same set of 
oordinates from these signed estimates, whi
hsu�
e to 
ertify the 
oordinates (though in pra
ti
e the 
erti�
ate should 
onsistof both the set of estimates and the derived 
oordinates). Elements of randomness
an be made deterministi
 by initializing from the same random seed, whi
h 
an bederived from the 
lient's ID. Thus, verifying a 
lient's self-
ertifying 
oordinates 
anbe done by 
he
king the validity of the landmarks' signatures on the estimates and34



re-running the 
omputation based on those estimates.For 
erti�able 
oordinates, the additional resour
e burdens on the landmarks arein storage and bandwidth�the 
urrent estimate, a single number, is stored for every
lient, and approximately twi
e as mu
h network bandwidth is used. Either 
an serveto limit the number of 
lients our system 
an support.Unfortunately, faulty 
lients 
an be 
hoosy about whi
h estimates they use intheir 
omputation, espe
ially in 
ollusion with faulty landmarks. They 
an do so by
laiming that measurements to a 
ertain subset of the landmarks had been dropped,so that their 
oordinates were 
omputed with only the remaining. Exa
tly how mu
ha faulty 
lient 
an manipulate its own 
oordinates within these boundaries is a subje
tfor future work.
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Chapter 5
Evaluation
To establish the feasibility of our approa
h to 
omputing 
oordinates and determinehow a

urate we were in the presen
e of Byzantine faults, we implemented a sim-ulation of our system. We found that our system's error in the presen
e of faultylandmarks was 
omparable to the error for 
oordinates 
omputed when no landmarkswere faulty. These results show that our system's approa
h is valid. In this 
hapter,we dis
uss our experimental setup, results, and interpretations thereof.5.1 SimulationOur simulation of our system is written in Java and 
onsists of 1162 lines of 
ode. Ituses an event-driven simulation to represent the delivery of messages in the steps ofthis proto
ol and our own 
ode for the gradient des
ent in the triangulation step.Our simulation in
ludes the modeling of the extra 
ommuni
ations and 
omputa-tions needed to handle Byzantine 
lients, but we have not yet implemented a modelfor the faulty 
lient that tries to manipulate its own 
oordinates. As mentioned inse
tion 4.4.2, a faulty 
lient may sele
tively ignore some of the measurements it re-
eives in order to 
ompute its 
oordinates. The simulation implements the simpli�edproto
ol in 
hapter 4 that does not deal with estimates over time.We used our simulation framework to study several adversarial models and eval-uate our system's e�e
tiveness. 37



5.1.1 King dataTo run our simulation on data 
onsisting of a
tual Internet laten
ies, we used theKing dataset from the P2PSim proje
t [9℄, 
ontaining 1740 DNS servers and thea
tual measured round-trip times between them. The King method for 
olle
ting thepairwise round-trip times was to make a re
ursive query to server A through server
B, and then make a query dire
tly to server B, and 
ompute the di�eren
e betweenthe round-trip times, as des
ribed in [11℄.We ran our system on a sample of 100 nodes sele
ted from the King dataset.Sin
e a small but nonzero fra
tion of the pairs of nodes in the King dataset do nothave measurements between them, we sele
ted our subset su
h that all (

100
2

) pairwisemeasurements were present.Vivaldi [6℄ was run on the 1740 nodes to generate the initial 
oordinates for land-marks to be used in simulations. This is not ne
essarily the best approa
h�it wouldperhaps be more valid to generate the 
oordinates by 
omputing network 
oordinateson only the nodes in our sample or only the landmarks in an experiment�but itprovides a reasonable approximation.5.1.2 AdversaryThe Byzantine adversary we 
hose for this simulation is quite powerful. We assume ithas knowledge of all the inter-node round-trip times and that a mali
ious landmark isable to in
rease or de
rease measured round-trip times; this a
tually serves to simplifyour model be
ause we do not require a lower bound 
onstraint on the measurementthat a faulty landmark may return.Be
ause we did not know a priori what kind of atta
k on our system would bemost e�e
tive, we experimented with several di�erent adversarial behaviors. In ea
hadversarial model, the delay is the dis
repan
y between what the 
orre
tly measuredround-trip time would be and the round-trip time that the 
lient sees; delays 
an bepositive or negative. Every 
lient is subje
t to atta
k. The adversaries we studiedare 
ategorized below. 38



Constant delay: Mali
ious landmarks all 
ause measurements to be delayed by thesame length of time.Random delay: Mali
ious landmarks independently randomly 
hoose a length oftime to delay ea
h message; the delay is 
hosen from a random distribution and
an be positive or negative.Random target: Mali
ious landmarks independently randomly 
hoose a target 
o-ordinate for ea
h 
lient. Then, ea
h landmark sets the delay so that the 
lientsees as its measurement the metri
 spa
e distan
e between its 
oordinates andthe target.Colluding target: Mali
ious landmarks randomly 
hoose and agree upon a target
oordinate for ea
h 
lient, and set the delay similarly to the random target 
ase.The latter two kinds of adversaries are motivated by the �repulsion� atta
kerin [13℄; some other atta
k methods from that and other works [5℄ are not dire
tlyappli
able be
ause they employ lying about a faulty node's 
oordinates, whi
h is notpossible in our landmark system.5.2 Experimental methodologyBased on the dis
ussion in se
tion 3.1.1, we 
hose L = 10. Ea
h di�erent settingof parameters was run in 200 experiments, ea
h initialized with di�erent randomseeds. In ea
h experiment, out of the 100 nodes, 2f + L were randomly 
hosen to belandmarks and the remainder were 
lients. We �rst ran the simulation with no faultylandmarks as the 
ontrol sample, and then with f faulty landmarks 
hosen randomlyfrom within the 2f + L, whi
h we refer to as the experimental sample. The 
ontrolsample represents the best 
oordinates that 
an be 
omputed from the landmarks, sothat the 
hoi
e of landmarks and the embedding error are 
ontrolled for, and just thee�e
t of introdu
ing faulty landmarks and using our proto
ol 
an be measured.39



5.2.1 Measuring a

ura
yTo understand how well our system prevented faulty landmarks from disrupting the
oordinate system, we studied several measures of error. The basis for our evaluationof our system's a

ura
y was the predi
ted and observed round-trip times between
lients and non-faulty landmarks. In the 
ontext of 
oordinates and measurements,these values are de�ned for a 
lient-landmark pair as follows.Consider a 
lient in an experiment. In the 
ontrol sample, it 
omputes its 
oor-dinates to be x; in the experimental sample, it 
omputes its 
oordinates to be x
′.For honest landmark i with 
oordinates xi, the observed distan
e is pi, the measuredinter-node round-trip ping time; the 
ontrol predi
ted distan
e is d(x,xi), as givenby the metri
 of the spa
e; and the experimental predi
ted distan
e is d(x′,xi).To determine how mu
h our experimental 
omputed 
lient 
oordinates deviatefrom the 
oordinates in the 
ontrol sample, we 
onsidered our experimental sample'spredi
ted distan
es relative to the 
ontrol sample's predi
ted distan
es. This 
losenessis given by

|d(x′,xi)− d(x,xi)|

d(x,xi)
,where x

′ is the 
lient's 
oordinate.The relative error for the predi
tions, a measure of how a

urate they are for pre-di
ting the a
tual round-trip laten
ies, is given by 
omparing the predi
ted distan
erelative to the measured distan
e; it is
|d(x,xi)− pi|

pifor the 
ontrol sample, and
|d(x′,xi)− pi|

pifor the experimental sample.These 
loseness and relative error values are aggregated at the 
lient level. Thatis, in ea
h experiment, ea
h 
lient's 
loseness or relative error was 
omputed for all
f + L honest landmarks, and the mean of these values was taken to be a data point40



representing that 
lient:Closeness: 1

f + L

∑

i∈honest landmarks |d(x′,xi)− d(x,xi)|

d(x,xi)
(5.1)Control relative error: 1

f + L

∑

i∈honest landmarks |d(x,xi)− pi|

pi

(5.2)Experimental relative error: 1

f + L

∑

i∈honest landmarks |d(x′,xi)− pi|

pi

(5.3)Note that we measure a

ura
y using all the honest landmarks, but these might notbe the same set of landmarks used to 
ompute the 
oordinates.Finally, data for all the 
lients a
ross all experiments with the same set of param-eters is 
onsidered together.5.3 Adversary typeIn this se
tion, we vary the type of adversary and �x the other parameters. Sin
e theadversary has no e�e
t on the 
ontrol sample, the result is that the 
ontrol sample isidenti
al a
ross adversaries. Hen
e, we 
ompare just the experimental relative errorsto see whi
h adversary is most e�e
tive at in
reasing them.We �rst 
onsidered the 
onstant delay adversary, with 
onstant delays of −25,
−10, 10, 25, 50, and 100 ms added to the round-trip time measurement. Figure 5-1
ompares the experimental relative errors (from formula 5.3) for ea
h 
hoi
e of delay
onstant a
ross di�erent values of f ; the mean, 10th per
entile, and 90th per
entilea
ross all 
lients in all experiments are plotted for ea
h 
hoi
e of the delay. There aretwo 
on
lusions to be drawn: �rst, the error is slightly worse for higher values of f ;se
ond, the error is worse for higher delays. These numbers appear 
onsistent withKaafar et al.'s observation that an atta
ker is not as e�e
tive when pulling nodestoward itself as when pushing them away [13℄.Next, we 
ompare all the di�erent adversarial behaviors, as shown in �gure 5-2.The random delay adversary 
hooses delays uniformly between −25 and 75 ms; thetargets for the random and 
olluding target adversaries are 
hosen randomly within41
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a box in the 
oordinate spa
e that bounds all the original 
oordinates 
omputed withVivaldi. Again, the data shows error in
reasing somewhat with f . It is not surprisingthat the 
olluding target adversary 
an make error worse than the random targetadversary, or, based on the previous 
omparison, that the random delay adversary(for our 
hoi
e of distribution) is less harmful than the 
onstant delay adversary forlonger delays.Based on our data, sin
e the 
olluding target adversary seemed to 
ause the great-est in
rease in error, espe
ially as f in
reased, we 
onsidered the 
olluding targetadversary for the remainder of our evaluation.
5.4 ClosenessWe analyze how 
lose the predi
ted distan
es in the experimental sample are to thepredi
ted distan
es in the 
ontrol sample. For ea
h 
lient, we plot its average 
lose-ness (formula 5.1) in �gures 5-3 and 5-4 as probability and 
umulative distributionfun
tions respe
tively. A 
loseness of 0 indi
ates that every predi
ted distan
e withfaulty landmarks is exa
tly the same as without. Some of a 
lient's predi
tions maybe
ome 
loser to the observed value, but 
loseness 
onsiders them to be deviationsfrom the original 
ontrol predi
tions.We �nd that even for f = 10, at the 90th per
entile, the error is quite low�90%of 
lients have 27% or less average dis
repan
y in their predi
ted distan
es from the
ontrol's predi
ted distan
es. This result suggests that for the vast majority of 
lients,the 
oordinates 
omputed in the presen
e of faulty landmarks give approximately thesame information about the proximity of other nodes as the 
ase there are no faults. Itis also 
lear that as f in
reases, the distribution of 
lient 
loseness extends further outas the experimental predi
ted distan
es approximate the 
ontrol predi
ted distan
esless well. 43
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entile error bars.5.5 Relative error ratioTo 
ompare the experimental sample against the 
ontrol sample, we show in �gure5-5 the mean and 10th and 90th per
entiles of the relative error for 
lients in theexperimental and 
ontrol 
ases. As expe
ted, the 
ontrol 
ase remains un
hanged as
f in
reases, but beyond f = 7 the mean of the relative error over the 
lients beginsto rise and is signi�
antly outside the error bars.For a more pre
ise quantitative evaluation, for ea
h 
lient we divided its experi-mental relative error by its 
ontrol relative error to get that 
lient's ratio of averagerelative errors,

1

f + L

∑

i∈honest landmarks |d(x′,xi)− pi|

pi

1

f + L

∑

i∈honest landmarks |d(x,xi)− pi|

pi

. (5.4)These ratios of average relative errors are plotted in �gures 5-6 and 5-7 as probability45
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and 
umulative distribution fun
tions respe
tively. Here, a ratio of 1 indi
ates thatthe 
lient's experimental 
oordinates are, on average, just as good at predi
ting itsround-trip distan
e to honest landmarks as the 
ontrol 
oordinates. A ratio less than1 indi
ates the 
lient's 
oordinates are even better in the experimental sample thanin the 
ontrol (this e�e
t is not entirely a

ounted for by the 
loseness evaluation).Our results show that the bulk of 
lients in the experimental sample have very 
loseto the same average relative error 
ompared to the 
ontrol. In fa
t, approximately halfof the 
lients have an average relative error that a
tually improves over the 
ontrol.Additionally, most of the 
lients do not have signi�
antly distorted 
oordinates. For
f = 2, for example, at the 90th per
entile, only 10% of 
lients were more than 23%per
ent worse at predi
ting round-trip times to the honest landmarks than in theexperimental 
ase. Similarly, for f = 6, 90% of nodes had less than 36% worserelative error, and for f = 10, the 90% 
uto� is at 75% worse error.5.6 SummaryThese results suggest that our system provides reasonably a

urate 
oordinates evenwhen there are f faults, the maximum tolerated in the system. Compared to the 
asewhen there are no faults, the resulting 
oordinates generally have a similar 
oordinate-spa
e view of the round-trip distan
es, and the average relative error either de
reasesor in
reases by a small amount for all but a small fra
tion of the 
lients. However,our system of 2f + L landmarks does be
ome less e�e
tive as f in
reases.
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Chapter 6
Related work
Although there are 
ountless works in the literature, some of whi
h use network
oordinates, that address the general problem of dis
overing lo
ation information ina network, only a few address the possibility of mali
ious nodes in the system andmitigating their e�e
ts on the rest of the system. We des
ribe some of the relevantworks in this area below.6.1 Network 
oordinates and positioningThere are three main kinds of network positioning systems, 
lassi�ed by their ap-proa
h to 
omputing lo
ation information: landmark-based 
oordinate systems, de-
entralized 
oordinate systems, and systems that do not use 
oordinates.Landmark systems: GNP [21℄ was a seminal landmark system that showed thethen-surprising possibility of embedding network nodes into a low-dimensionalEu
lidean spa
e with low error. Ea
h 
lient in GNP minimizes an error fun
tionusing a simplex algorithm [20℄ to 
ompute its 
oordinates. Virtual Landmarks[32℄ uses a Lips
hitz embedding, in whi
h the n-dimensional 
oordinates arethe minimum distan
e to ea
h landmark, and then applies prin
ipal 
omponentanalysis to redu
e the dimensionality of the 
oordinates.Several systems have a set of global landmarks, but nodes do not have to 
om-49



muni
ate with them dire
tly. NPS [22℄ uses a hierar
hi
al stru
ture and isbased on GNP. In Lighthouse [25℄, ea
h node 
omputes its 
oordinates relativeto some neighbors (that do not have to be the landmarks), then transforms itslo
al-basis 
oordinates into the global basis for the 
oordinate spa
e.De
entralized systems: Vivaldi [6℄ is a frequently studied de
entralized 
oordinatesystem that introdu
ed the notion of height ve
tors; it uses the spring poten-tial energy fun
tion as a basis for 
omputing 
oordinates. Big-Bang Simulation[29℄ uses a model of for
e �elds between points, in whi
h points attra
t or re-pel to redu
e error. These two systems model a physi
al simulation in whi
h
oordinates 
hange to minimize the potential fun
tion. PIC [5℄ showed thata node's predi
tions of short distan
es and long distan
es were more a

uratewhen the neighbors were 
hosen to be 
lose to the node or at random, respe
-tively, and that the best 
oordinates were 
omputed from a mix of 
lose andrandom neighbors. PCoord [16℄ uses a similar observation to try to maintainnearby neighbors in its 
omputation; nodes use a simplex downhill algorithm[20℄ to 
ompute 
oordinates and the triangle inequality to estimate unmeasureddistan
es.Non-
oordinate systems: Meridian [36℄ does not use 
oordinates but pla
es neigh-bors into 
on
entri
 rings based on their measured distan
e; it appears to fo
uson the problem of routing in overlay networks. O
tant [37℄ is a system for geolo-
ating nodes, rather than pla
ing them with respe
t to ea
h other in a syntheti

oordinate system; the interesting te
hnique it uses is to de�ne regions of 
er-tainty based on an error toleran
e in ea
h measurement and thresholding to�nd a region of spa
e 
onsistent with su�
iently many measurements.iPlane [18℄ and Netvigator [28℄ do not treat the network as a bla
k box, butuse data about distan
es to intermediate routers from tra
eroute probes. iPlaneattempts to build a stru
tural model of the network topology; Netvigator pro-vides a servi
e to lo
ate nearby landmarks and guesses inter-node laten
ies byusing the triangle inequality on the two endpoints and any landmark.50



6.2 Atta
ksKaafar et al. [13℄ helped to motivate this thesis by showing the vulnerability of Vivaldito mali
ious nodes in the system. They identi�ed three possible adversarial behaviors,whi
h they 
alled disorder, repulsion, and 
olluding isolation, and showed that evenwith a small per
entage of faulty nodes in the system, Vivaldi's a

ura
y degradeddramati
ally. Zage and Nita-Rotaru [38℄ 
lassi�ed adversarial behaviors as in�ating,de�ating, or os
illating, based on whether they tended to 
ause nodes to in
orre
tlymove or fail to move in adjusting to measurements. They studied the e�e
ts ofdi�erent adversaries on Vivaldi and 
ame to similar 
on
lusions.The adversary in PIC [5℄ is mu
h more powerful; its behavior is determined byan optimization problem to be as harmful as possible, and it is assumed to be ableto advertise false 
oordinates and de
rease measurements within some limits. Theadversary uses the simplex algorithm [20℄ to solve a multi-dimensional optimizationproblem over the 
oordinates and measurements for every mali
ious node.We do not think that a more sophisti
ated atta
ker like PIC's would 
hange thefundamental design of our system. However, there may be geometri
 weaknesseswe have not yet dis
overed that su
h an atta
ker might exploit. Furthermore, someparameters, su
h as the number of landmarks needed to tolerate f faults, may needto be adjusted to maintain an a

eptable level of error.6.3 Redu
ing errorSeveral works apply te
hniques for redu
ing error, often against mali
ious adversaries,to 
onstru
t new systems or to se
ure existing de
entralized systems su
h as Vivaldi.6.3.1 Triangle inequality violationsOne sour
e of embedding error en
ountered in Internet measurements is violationsof the triangle inequality, where for nodes a, b, c, the measured a�b laten
y plusthe b�c laten
y is less than the a�c laten
y. Any su
h nodes 
annot be embedded51



without distortion in a metri
 spa
e, whi
h must satisfy the triangle inequality byde�nition [27℄. Yet in many datasets in the literature [34, 6, 32℄, large fra
tions ofthe node pairs (a, b) were subje
t to a triangle inequality violation, where some node
c existed su
h that d(a, c) + d(c, b) < d(a, b). Many su
h violations are attributed tomeasurement un
ertainty, but signi�
ant fra
tions (10�37% in some data sets [15℄)had severe violations. Nevertheless, 
oordinate systems su
h as Vivaldi [6℄ are stillable to 
ompute good 
oordinates when there are no faults, although a small fra
tionof predi
ted distan
es will be ina

urate.While many triangle inequality violations exist be
ause of internet routing poli
ies[17℄, mali
ious nodes may also be a sour
e of these in
onsisten
ies. Some systemstherefore attempt to dete
t these violations to ex
lude measurements that violate thetriangle inequality.Nodes in PIC [5℄ dete
t triangle inequality violations and iteratively remove neigh-bors that show the worst violation from their 
oordinate 
omputation until the re-maining error is small.Wang et al. [34℄ use the idea that measurements that give a high relative er-ror between the predi
ted and observed distan
es are likely to 
ause severe triangleinequality violations. Neighbors are ranked based on how likely they are to 
ausetriangle inequality violations, and the less likely half are kept in the 
omputation.Unlike PIC, the authors only 
onsider the inherent triangle inequality violations inthe spa
e, not mali
ious atta
kers.6.3.2 Statisti
al analysisSeveral other approa
hes use statisti
al analysis of the behavior of nodes' 
oordinatesand how they 
hange over time to predi
t when a measurement is anomalous andthus more likely to be faulty.Kaafar et al. [12℄ use Kalman �ltering to dete
t errors that 
an be introdu
ed bymali
ious nodes. As a basis for 
orre
t behavior of 
oordinates over time, nodes use�lter parameters from a nearby trusted node, while trusted nodes only 
ommuni
atewith other trusted nodes. Unfortunately, this approa
h relies upon an infrastru
-52



ture of trusted nodes that are assumed never to be faulty; these nodes may need to
onstitute as mu
h as 8% of the system if they are 
hosen randomly [12℄.Zage and Nita-Rotaru [38℄ use the te
hnique of outlier dete
tion, borrowed fromnetwork intrusion dete
tion systems. Spatial outliers are neighbors that report dis-tan
es in
onsistent with other neighbors, while temporal outliers are neighbors thatare in
onsistent over time; outliers beyond a threshold are removed from the 
oordi-nate 
omputation.Ledlie et al. [15℄ use laten
y �lters on measurements from the same sour
e, sim-ilar to our notion of estimates, and update �lters to make 
oordinates more stable(rather than a

urate). They also use a te
hnique to in
orporate measurements fromneighbors that may be in only infrequent 
ommuni
ation, a useful adaptation for asystem that only in
ludes passive measurements.6.3.3 VotingVera
ity [30℄ is a system in whi
h a node's 
oordinates are veri�ed by a veri�
ationset, whose members approve the 
oordinates by measuring the round-trip time tothe node and 
he
king that it is 
onsistent with the 
oordinate spa
e distan
e. Toprevent atta
kers from overrepresenting themselves, a node's veri�
ation set is 
hosendeterministi
ally by hashing its IP address and looking up the value in a distributedhash table [2℄.Vera
ity assumes a 
onstrained-
ollusion Byzantine atta
ker, as introdu
ed in [3℄,in whi
h the faulty nodes are divided into small 
ohorts and only 
ollude within their
ohort. This assumption makes it mu
h easier to show the feasibility of voting, as thefaulty nodes are mu
h less likely to 
ollude to overwhelm a vote together. However,sin
e the authors assume a minimum of 10 distin
t 
ohorts, and ea
h 
ontains lessthan 10% of the nodes, it is a mu
h weaker adversarial model than the Byzantineadversary assumed by our work and others [5, 38℄. Another drawba
k is that inorder to verify a node's 
oordinates, one must must 
onta
t its entire veri�
ation set,requiring an O(log n) DHT lookup for ea
h of the set members.53
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Chapter 7
Con
lusion
We designed and implemented a landmark-based network 
oordinate system that isable to provide a

urate 
oordinates even when some of the landmarks are Byzantinefaulty. Still, the �nal word on fault-tolerant network 
oordinates is far from beingwritten.Ideally, our system should not see a

ura
y de
rease as f in
reases. That our ex-periments show this to be happening indi
ates that we may not have 
hosen pre
iselythe number of landmarks to tolerate f faults. It is 
on
eivable that 
ould tolerate ffaulty landmarks with fewer than 2f + L landmarks when f is small; 
onversely, wemay want more than 2f +L landmarks for larger f to minimize the introdu
ed error.Be
ause it was randomly determined whi
h nodes were 
hosen as landmarks inexperiments, our results 
ould potentially be stronger if our landmarks were 
arefullysele
ted to be well-distributed, although we attempted to 
ontrol for this e�e
t withthe 
ontrol sample�our experiments to 
ompare the 
ases with and without faultynodes ea
h used the same sele
tion of landmarks within our set of nodes. Conversely,note also that we randomly sele
ted whi
h landmarks were faulty. In the future, weplan to analyze a Byzantine atta
ker that has su�
ient 
ontrol to 
hoose a parti
ularlybad set of landmarks to be
ome faulty.It is possible that better algorithms and strategies exist for 
oping with faultymeasurements. One motivation for using gradient des
ent for the nonlinear program-ming in the triangulation in se
tion 4.3.2 was its relative ease of implementation.55



In the future, it may be preferable to use an existing dedi
ated pa
kage su
h asOpenOpt [23℄ to solve the nonlinear programming problem in the triangulation step.Merz and Priebe [19℄ also re
ently suggested a repla
ement for standard nonlinearprogramming algorithms and 
laimed to perform better on 
omputing network 
oor-dinates. It may also be telling to 
ompare the error in 
oordinates 
omputed withour estimate-removing strategy against the error from the exponential-time optimalstrategy.More data about short-term varian
e in measurements due to e�e
ts like network
ongestion may be gleaned by 
ondu
ting larger-s
ale experiments on real networkssu
h as PlanetLab, though these real-time measurements will have the disadvantagethat it is more di�
ult for faulty landmarks in our experiments to de
rease measureddistan
es on the Internet. We hope that also 
olle
ting data on bandwidth usagemay further support the argument for our system's pra
ti
ality for deployment onInternet-s
ale networks.
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