I|I'I- Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2009-015 April 16,2009

Computing Network Coordinates in the
Presence of Byzantine Faults
You Zhou

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

COMPUTING NETWORK COORDINATES IN THE PRESENCE OF
BYZANTINE FAULTS
by
YOU ZHOU

S.B., Electrical Engineering and Computer Science (2007); S.B., Mathematics (2007)
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2008
Copyright 2008 You Zhou.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part in any
medium now known or hereafter created.

This work is licensed under the Creative Commons Attribution License. To view a
copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, CA 94305.

AUEOT .«
Department of Electrical Engineering and Computer Science
May 23, 2008

Certified by
Barbara Liskov

Ford Professor of Engineering

Thesis Supervisor

Accepted DY ..o
Terry P. Orlando
Chairman, Department Committee on Graduate Students

COMPUTING NETWORK COORDINATES IN THE PRESENCE OF
BYZANTINE FAULTS
by

YOU ZHOU

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Network coordinate systems allow for efficient construction of large-scale distributed
systems on the Internet. Coordinates provide locality information in a compact way,
without requiring each node to contact every potential neighbor; distances between
two nodes’ coordinates represent estimates of the network latency between them.

Past work on network coordinates has assumed that all nodes in the system behave
correctly. The techniques in these systems do not behave well when nodes are Byzan-
tine. These Byzantine failures, wherein a faulty node can behave arbitrarily, can make
the coordinate-based distance estimates meaningless. For example, a Byzantine node
can delay responding to some other node, thus distorting that node’s computation of
its own location.

We present a network coordinate system based on landmarks, reference nodes that
are used for measurements, some of which may be Byzantine faulty. It scales linearly
in the number of clients computing their coordinates and does not require excessive
network traffic to allow clients to do so. Our results show that our system is able to
compute accurate coordinates even when some landmarks are exhibiting Byzantine
faults.

Thesis Supervisor: Barbara Liskov
Title: Ford Professor of Engineering

Acknowledgments

Thanks foremost to my advisor, Barbara Liskov, for her support, feedback, and well-
considered optimism, without which I never would have written this all in time. Her
sense of direction and guidance on this thesis were invaluable.

Thanks to James Cowling for instigating this project, for innumerable helpful
discussions, and for providing code for implementations of some of the related work.
This thesis could not be possible without him.

Thanks to my academic advisor, Madhu Sudan, for providing bountiful advice
and genuinely caring; to David Karger for pointing out an error in an earlier version
of this work; to Dan Ports for sending papers our way; and to Waseem Daher, Jeff
Arnold, the other SIPB thesers, and David Dryjanski for staying afloat together.

Thanks to all the PMG labmates, my guides down the forking paths of research,
who helped me learn the ways of systems and made the kidney a welcoming place.
And all the other researchers publishing in this area of late unknowingly provided
some relevance-motivation.

MIT Medical helped prevent an eleventh-hour injury from spelling midnight for
finishing this thesis on time. It gave me yet another perspective on Eri I[zawa’s nice
“thesis comes at the end” sentiment.

It’s no use to write but lose one’s sight. Thanks to my friends for their encour-
agement, especially to Yi-Hsin Lin for keeping my life in tune, and to my parents for

their perspicacious perspective.

Contents

Introduction

1.1 Motivation L

1.2 Our contributions oo

1.3 Thesisoutline

Approach

2.1 Design considerations
2.1.1 Abstract model
2.1.2 Byzantine adversary
21.3 Faults
2.1.4 Landmarkso

2.2 Goals.

Requirements

3.1 Definitions
3.1.1 Base number of landmarkso
3.1.2 Metricspace
3.1.3 Byzantine fault toleranceo 0oL

3.2 Landmark coordinates oo
3.2.1 Accuracy
3.2.2 Publication Lo
3.2.3 Distribution

3.3 Cryptography

11
11
12
12

15
15
15
16
16
18
19

4 Protocol for Computing Coordinates

4.1 TInitialization .

4.2 Measurement Protocol

4.3 Computation

4.3.1 Error function oo
4.3.2 Triangulation oo oL
4.3.3 Strategy L
4.4 ExXtensions
4.4.1 Estimate abstraction 0oL
4.4.2 Certifiability and faulty clients

5 Evaluation

5.1 Simulation
51.1 Kingdata
5.1.2 Adversary

5.2 Experimental methodology
5.2.1 Measuring accuracyo

5.3 Adversary type

5.4 Closenesso
5.5 Relative error ratio
5.6 SUMMAry

6 Related work

6.1 Network coordinates and positioning

6.2 Attacks . ..
6.3 Reducing error

6.3.1 Triangle inequality violations

6.3.2 Statistical analysis oo

6.3.3 Voting

7 Conclusion

27
28
28
29
30
30
31
33
33
34

37
37
38
38
39
40
41
43
45
47

49
49
ol
ol
o1
52
93

55

List of Figures

2-1

5-1
5-2
9-3
o-4
9-9
2-6
o-7

Adversarial behavior for faulty measurements 17
Computation pseudocode 29

Relative error for different delay values for a constant delay adversary 42

Relative error for different adversary types 42
Closeness probability distribution 44
Closeness cumulative distribution 44
Relative error for experimental versus control 45
Relative error ratio probability distribution 46
Relative error ratio cumulative distribution 46

10

Chapter 1

Introduction

1.1 Motivation

Nodes in a system distributed across the Internet have no inherent measure of their
proximity to each other, but by communicating with nearby nodes, they may be able
to reduce communication costs. Assuming bandwidth does not represent a bottleneck,
nodes can actively ping other nodes to determine the latencies or round-trip times
to other nodes; however, doing so for thousands of nodes can be costly and may
outweigh any derived benefit. Network coordinates are a compact representation of
this proximity information that can avoid such costs.

Network coordinates are an embedding of nodes into a metric space, with the
distance between nodes in the space representing the round-trip time between them.
Typically, a node will make some small number of measurements to other nodes in
order to determine its own coordinates. When all the nodes in the system behave
correctly, the resulting coordinates can predict network latencies accurately [14, 31].

To be useful, coordinates for a node must have a low error, defined as the difference
between the actual and predicted round-trip times. However, things can go badly if
nodes in the system are trying to compromise its effectiveness. Attackers can try
to worsen the error for a correctly behaving node by distorting measurements, lying
about their own coordinates, or causing network delays. For example, in Vivaldi

[6], a decentralized coordinate system, even with only 10% of nodes in the system

11

maliciously colluding to disrupt the coordinates, the median average error can more

than double [13].

1.2 Our contributions

The main problem our design addresses is that of faulty landmarks, the nodes to
which clients make measurements to compute their own coordinates. We present a
new system that allows correctly behaving clients to compute accurate coordinates
even if some of their measurements are faulty—the measured round-trip times may
be inaccurate or the landmarks may never respond.

Our system protects against a powerful Byzantine adversary that can control
a fraction of the nodes in the system and coordinate them to behave arbitrarily.
Additionally, our coordinate system is practical: coordinates are compact, they can
be efficiently computed by a node from its measurements to a set of landmarks, they
are easily translated into predictions for network latencies, and very little bandwidth
overhead is used for measurement.

Results from our simulations show that even with measurements from Byzantine
faulty landmarks, our coordinate system provides clients with coordinates that are
nearly as accurate for predicting network latencies as they would have been had there

not been faults.

1.3 Thesis outline

The remainder of the thesis is organized as follows:
Chapter 2 outlines the basic problems this thesis addresses and the design decisions
we made.
Chapter 3 provides definitions and groundwork for our system.
Chapter 4 explains the protocol our system uses to compute coordinates.
Chapter 5 describes our implementation, a simulation based on actual network

measurements, and our results.

12

Chapter 6 surveys prior research in network coordinate systems, including previous
approaches to mitigating error.

Finally, Chapter 7 concludes with our observations and directions for future work.

13

14

Chapter 2

Approach

2.1 Design considerations

2.1.1 Abstract model

The abstract model of a network coordinate system consists of nodes in the network
and the pairwise round-trip times, or distances, between them. It ignores heuristic
information, such as IP prefixes, that might provide hints about which nodes are
proximate to each other. Synthetic coordinates, embedding the nodes into a coor-
dinate space, are then computed from some measurements of the round-trip times,
so that the distance between nodes is a prediction of the corresponding round-trip
latency; coordinates are chosen to minimize some measure of error. The state of the
network at any given time reflects the round-trip times measured at that time. Most
previous work in the area of network coordinates [6, 32, 25, 21, 22, 29, 38, 34, 30|
follows this model.

In network coordinate systems, a client node may join and need to compute its
coordinates, or it may need to maintain them to be accurate over time. In the abstract
model, to carry out this task, a client uses measurements of the round-trip times to
some subset of the nodes in the system, referred to as its neighbors, and computes
(adjustments to) its own coordinates relative to the coordinates of its neighbors. If

every node uses the same set of neighbors, this set is called the landmarks and the

15

system is said to be a landmark system. Otherwise, it is considered a decentralized
system.

Some systems, such as Vivaldi [6], also use auxiliary information about the es-
timated error in coordinates, so that accurate coordinates influence inaccurate ones
more than vice versa.

The coordinates, measurements, and other information must be accurate in order
for nodes to accurately compute coordinates and gain useful information about the
proximity of other nodes but are easily distorted by an adversary trying to make
the system less useful. We designed our system to protect against as powerful an
adversary as possible, for maximal generality. For the reasons described in the next
section, we use a landmark-based approach rather than a decentralized approach to

computing network coordinates.

2.1.2 Byzantine adversary

The adversarial model we assume is based on Byzantine faults. A node experiencing
a Byzantine fault can behave arbitrarily [4]—it may stop responding, send spurious
messages, delay messages, and so on. A Byzantine faulty node can actively try to
compromise the correctness of the system.

We assume a general, powerful Byzantine adversary that can coordinate all of
the faulty machines in the network to do its bidding. Additionally, the Byzantine
adversary may introduce network delays for a bounded period of time and manipulate

the routing of packets to distort distance both positively and negatively.

2.1.3 Faults

How can a Byzantine adversary attack correctly behaving nodes in the system? It
can do so principally by forging information given to other nodes or manipulating the
measurements other nodes make to malicious nodes.

If a neighbor is faulty, it cannot be relied upon to respond with its own coordinates

or auxiliary information correctly. It is easy for a malicious node to lie about its own

16

VAREE

L]

L lE

Figure 2-1: The central node makes measurements to nodes A through E. A behaves
correctly. B does not respond. C delays messages, increasing the measured RTT. D
has messages rerouted to D', decreasing the measured RTT. E responds correctly but
is affected by network delay.

state in response to requests that ask for it. And unfortunately, a protocol to verify a
neighbor’s coordinates using the neighbor’s neighbors can be prohibitively expensive,
especially if that neighbor is also updating its own coordinates and cannot be expected
to have the same coordinates from measurement to measurement.

Furthermore, a neighbor will always be able to distort measurements made to
it. Consider the measured round-trip time to be the elapsed time between a node
sending a message to its neighbor and its receiving a response. Figure 2-1 illustrates

the possible adversarial behavior:

(B) The measured times can go to infinity if message responses are dropped, as

responses never arrive.

(C') The measured times can increase arbitrarily if message responses are intention-

ally delayed.

(D) The measured times can increase or even decrease if messages are intercepted

17

and rerouted to a closer colluding machine. This last, counter-intuitive scenario

is further explained below.

Puppeteer

Consider a malicious node operated by an adversary that also controls routing for
some subnetwork containing it. This node can share its credentials with other ma-
chines in this subnetwork, allowing them to “impersonate” it. The border routers
of this subnetwork can then redirect traffic to the closest of these machines. This
adversary, which we call a puppeteer, can thus act to decrease distances measured to
this malicious node, even when the node’s coordinates are accurate and it does not
misrepresent its own coordinates. With sufficiently many puppets and enough control
over how packets are routed, the distance may be decreased arbitrarily.

To our knowledge, this adversary has not been previously examined in the liter-
ature. For example, Kaafar et al. assumed an attacker that only increases measured
times [13], and PIC assumed an adversary could decrease distances only down to the

distance to the nearest malicious node [5].

Network delays

We assume the attacker is able to introduce persistent network delays on some links
between a node and some neighbors (such as E in Figure 2-1), even if the neighbors are
behaving correctly. Measurements to these neighbors thus will be inconsistent with
the original network round-trip times. However, we believe it is reasonable to expect
network damage to be repaired eventually, so that delays cannot persist forever. We
address the problem of network delays in an extension to our work by adapting over

time in response to new measurements, as described in 4.4.1.

2.1.4 Landmarks

It is clear that a Byzantine adversary able to misrepresent both the coordinates of

and measurements to nodes it controls is much more dangerous than one that can

18

only manipulate one of these pieces of data. For this reason, we chose our system to
be a landmark system, in which client measurements are made only to a fixed set of
landmark nodes with published, stable coordinates: landmarks cannot misrepresent
their own coordinates and do not update them.

Any distributed system can be set up to use landmarks. Since landmarks are
only in infrequent communication with all the clients in the system, they require only
a small amount of additional infrastructure. Ratnasamy et al. [26] observe that a
single landmark may even be replicated across multiple machines in one data center.
Geometric requirements on the positions of the landmarks are examined in section

3.2.3.

2.2 Goals

Our system was designed to achieve certain properties, some of which are largely
defined by the role of a network coordinate system. These properties, as we formulate

them, are:

Accuracy: Our system should provide coordinates that predict network round-trip

times well.

Fault tolerance: Our system should provide reasonably accurate coordinates to
honest clients even if some landmarks are Byzantine faulty or network delays
cause inaccurate measurements. Our coordinates should be accurate even when

all faulty nodes in the system can collude.

Practicality: Clients must be able to compute their own coordinates in a reasonable
amount of time. Landmarks should not have intensive computational demands

placed on them.

Efficiency: Since the purpose of network coordinates is to reduce the amount of
communications overhead necessary to determine the proximity of other nodes

in the network, our system should not impose excessive communication burdens.

19

Scalability: For the measurement overhead to grow linearly with the number of
clients in the system, each client should communicate with only a constant

number of nodes—the landmarks.

Certifiability: Our coordinates can be made self-certifying, so that other nodes can

verify a client’s coordinates.

20

Chapter 3

Requirements

In this chapter, we present the basic assumptions and groundwork for our network

coordinates system.

3.1 Definitions

We call clients the nodes that join the system and compute their own coordinates
from measurements made to the landmarks.

The system parameter f, known to all nodes in the system, specifies how many
faulty landmarks are tolerated. In addition to the L landmarks that are required to
compute accurate coordinates even if none of them are faulty, to tolerate f faults we
include an additional 2f landmarks. We describe these parameters in more detail

below.

3.1.1 Base number of landmarks

Suppose that no landmarks are faulty. While in theory, in a d-dimensional space, only
d+1 landmarks are required to accurately triangulate coordinates, due to the inherent
embedding distortion, more are usually needed for a reasonable level of accuracy. We
call L the base number of requisite landmarks.

Past work has studied the number of landmarks without settling on a definitive

21

number for L. Ratnasamy et al. [26] found that 8 to 12 landmarks are sufficient
in a low-dimensional space. Dabek et al. [6] found that the accuracy of GNP [21],
a landmark-based coordinate system, did not significantly increase beyond 16 land-
marks, although the authors of GNP used 19 in their experiments. Tang and Crovella
[32] used 11 and 12 landmarks for some other datasets, according to what was avail-

able.

3.1.2 Metric space

The authors of Vivaldi [6] studied the effects of choosing different metric spaces for
the coordinate embedding. One kind of space, a 2-dimensional Euclidean space to-
gether with a height vector representing the distance to the network core that most
paths to a node would have to traverse, was found to be more effective than either a
Euclidean space in higher dimensions or a spherical space. Later work by Ledlie et
al. [15] confirmed that 2-D spaces with height vector were more effective than higher-
dimensional Fuclidean spaces for representing the topology of the Internet on several

data sets.

Following Vivaldi’s results, we chose to use a 2-D Euclidean space with height
vectors for our implementation. A point in the space is given as x = (z,y, h), with
the third coordinate representing the height (h > 0). The precise definition of the

distance metric is as follows:

d(<5€17 Y1, h1), (2, Yo, h2>) = \/(371 —2)? + (y1 — y2)* + hy + hy

It is clear that this definition satisfies the metric space axioms of symmetry and
the triangle inequality [27]. Although the distance from a node to itself d(x,x) is
not 0 in general, this detail has no effect in practice because a node never needs to

measure the round-trip time to itself.

22

3.1.3 Byzantine fault tolerance

Since there is no way to determine when a landmark is Byzantine faulty, as it may
behave arbitrarily, when we compute coordinates, we have no a priori way to decide
which measurements are the results of faults and should be excluded from the com-
putation. Our approach will be to have the non-faulty landmarks outweigh the faulty

ones.

Intuitively, because in a d-dimensional space, d measurements are insufficient to
locate a single point, the faulty landmarks may be able to agree in a region of the
coordinate space where several honest landmarks also agree in hopes of causing a
client to choose bad coordinates there. So f additional honest landmarks may be
needed to agree on the correct coordinate, and we suppose that L are necessary for
accurate coordinates in any case. Thus, we choose 2 f+ L for the number of landmarks
used to tolerate f faults. While our choice of 2f + L landmarks appears to suffice, in

theory, it may also be possible to have fewer landmarks beyond the f.

3.2 Landmark coordinates

3.2.1 Accuracy

The coordinates in our system are bootstrapped by the landmarks’ published co-
ordinates. We assume that the landmarks have accurate, unchanging coordinates.
Coordinates that never change are a reasonable simplified model, since we do not

expect network topologies to change frequently.

However, if topologies do change over long periods of time, fixed coordinates,
such as those of the landmarks, will not remain accurate, and neither will the client
coordinates that were computed with them as reference points. However, this problem
is orthogonal to that of computing accurate client coordinates for honest clients, the

focus of our work, so we do not consider it here.

23

3.2.2 Publication

A client joining the system must have some mechanism to discover the landmarks’
published coordinates. Our system uses the idea of a directory service from Tor
|8]. We assume that the landmarks publish their IP addresses and coordinates in the
directory, and that it is easily accessible to clients. The directory contains a certificate
authority’s public key, which the client can use to verify the landmarks’ public keys
in order to prevent a man-in-the-middle attack. We assume the directory is not faulty
and always has available the list of coordinates and IP addresses of all the landmarks,
signed by the certificate authority. (See section 3.3 for the cryptographic assumptions
we require.)

The directory provides a trusted view of the landmarks in the system to clients. It
prevents landmarks that later become faulty from reneging on their originally chosen,
correct coordinates.

A directory can represent a single point of failure and can become a bottleneck.
The former problem can be solved using replication—for example, by using PBFT
|4]. The latter is not problematic in our system because we have only very limited
bandwidth demands on the directory. Each client needs only to retrieve the land-
marks’ coordinates and one public key, which even for hundreds of landmarks should
not take up more than a few kilobytes. Alternative approaches to discovering the net-
work, such as asking landmarks for a list of the other landmarks in the system, can
offload some of the work from the directory, but the directory stills needs to provide

the certificate authority’s public key.

3.2.3 Distribution

The accuracy of a landmark-based coordinate system depends on the relative position
of the landmarks in the coordinate space. Two landmarks that are too close to one
another may not provide as much discriminating information as they would if they
had greatly differing paths across the Internet to clients. Tang and Crovella [33]

showed that well-chosen landmarks can significantly reduce the number of landmarks

24

needed for the same level of error. Some other work considers [5, 16, 39| how landmark
selection differently affects the accuracy of predicting short and long distances.

We assume that our landmarks can be chosen to be distributed across data centers
that are separated geographically and are pre-selected out-of-band by the system

operators to be well-distributed.

3.3 Cryptography

Our system requires a basic level of authenticity. A landmark signs the measurement
messages it sends, and the public keys of the landmarks are all signed by a certificate
authority whose public key is available from the directory service. All signatures are
assumed to be existentially unforgeable [10].

We also include nonces in all measurement messages to prevent replay attacks or
spoofed replies from being able to affect round-trip times. Some systems [5] assume
that nonces are sufficient to guarantee the authenticity of message responses from
landmarks, but we note the possibility of intermediate routers under the Byzantine
attacker’s control that could read the nonce.

Our scheme uses public key cryptography, because the communications are so
infrequent that the cost of public key cryptography is not too great. To set up a
shared key using Diffie-Hellman key exchange [7] would require more round-trips and
additional messages, and the landmarks would have an additional resource burden of
at least temporarily storing a secret key for every client.

We assume our cryptographic primitives are unbreakable, treating them as a black
box. We do not specify any particular cryptographic scheme to be used, so long as it

meets our requirements.

25

26

Chapter 4

Protocol for Computing Coordinates

This section describes the protocol for a client to compute its coordinates from scratch.
Our system begins with established landmark coordinates. Clients joining the system
compute their coordinates from measurements to the landmarks. However, because
some landmarks are faulty, we would like to prevent measurements to them from
distorting our computed coordinates; thus, we attempt to exclude responses from
faulty landmarks.

Each client can be considered in isolation, since its communications are only with
the landmarks. There are two phases in this protocol: First, the client makes mea-
surements to all of the landmarks. Then, once it has these measurements, it runs a
computation to find its coordinates, eventually discarding some of the measurements.

To decouple the measurements from the computation step, we introduce an ab-
straction, the estimate, representing a client’s view over time of the round-trip latency
to a landmark. The computation step runs atop the estimate abstraction. Since we
assume that network latencies return to normal eventually, in the average case we
will have an estimate for all landmarks.

The system we implemented is a simplification that does not use estimates gleaned
from many measurements over time, but instead a single measurement is used as the
estimate. This simplification has the same properties except that it does not handle
network delays, as introduced in section 2.1.3; instead, it assumes that nodes affected

by persistent delay are never heard from and thus faulty. It reflects the client’s initial

27

state upon joining, when it does not have prior histories for any landmarks and may
be unable to compute its coordinates accurately if it is affected by these network

faults.

4.1 Initialization

The client first obtains the list of landmarks and the certificate authority’s key from
the directory service, and it verifies the list’s accuracy. Then it begins to measure
the round-trip times to the landmarks, using the landmark TP addresses from the
directory. The landmark coordinates from the directory are used later, in the com-

putation.

4.2 Measurement Protocol

A client initiates a measurement to a landmark A by sending a ping message contain-
ing the client’s nonce, noncey, to A. Upon receiving such a message, A responds with
a pong message containing nonce;. This message is signed by A to prevent spoofing
by an adversarial network. When the client receives the pong, it verifies that the
message came from A and takes the elapsed time since sending the ping message as
the measured round-trip time. In our simplified system, this measurement is taken
directly as the estimate that is used in the computation.

While an honest landmark will reply to the client immediately, faulty landmarks
may affect the measurements in a number of ways, as described in section 2.1.3.
Though landmarks cannot lie about their coordinates, they can distort measurements
both positively and negatively.

Some faulty nodes may fail and never respond to measurements, so we also im-
plement a timeout of approximately 800 milliseconds for each measurement. We
assume that any latencies longer than this timeout do not correspond to accurate

measurements and discard them.

28

COMPUTE-COORDINATES(initial-coords, estimates)

x < GRADIENT-DESCENT(initial-coords, estimates)
0 — | estimates |
while ¢ > f+ L
do estimates. remove(ESTIMATE-WITH-WORST-ERROR(estimates))
(—10—1
z < GRADIENT-DESCENT(z, estimates)
return x

1 O U W N

Figure 4-1: Pseudocode for the computation. An estimate is removed and the coor-
dinates are recomputed, iteratively, until f + L remain.

4.3 Computation

After obtaining estimates, of which the client will have up to 2f + L, and having
learned the landmarks’ published coordinates from the directory, the client computes
its own coordinates. Our protocol for computing landmark-based coordinates removes

up to f nodes from the computation incrementally.

There are two issues to consider:

1. Given a set of estimates to landmarks, how are coordinates chosen to minimize

the error?

2. Which landmarks’ estimates should be included in the computation of the

client’s coordinates?

These aspects of the computation are referred to as the triangulation for selecting
coordinates and the strategy for selecting landmarks to use, respectively. We chose
to use a gradient descent for the triangulation step; it is run initially to include all
available estimates. Our strategy is to iteratively remove the estimate with the worst
error from the triangulation and recompute until only f + L landmark estimates

remain. Figure 4-1 shows a pseudocode description of our algorithm.

29

4.3.1 FError function

Since the coordinate system is used to predict round-trip times between nodes, we
define the error in each estimate as the inaccuracy between the coordinate distance,
or the predicted round-trip time, and the estimate, or the measured round-trip time.
Let p; be the measured round-trip ping time from the client to landmark 7, whose
coordinates are x; = (;, ¥;, h;) in the 2-D with height metric space. For the individual
errors, we use the spring potential energy error function as defined in Vivaldi [6],
(d(x,x3) — pi)?.

The total error function is defined to be the average of the errors in the estimate
to each landmark. Thus, the average error at a point x = (x,y, h) is the average of

the spring potential energies,

1
n Z (d(XaXi)—pi)Z,
i€landmarks

where n is the number of landmarks in the computation. In a 2-dimensional with

height metric space, this expression becomes

% Z (\/(x—xi)2+(y—yi)2+h+hi—pi)2.

i€landmarks

4.3.2 Triangulation

In the triangulation step, a set of estimates to landmarks and a starting point in the
coordinate space is given as the input, and the output is a point in the coordinate
space that minimizes the error function for those landmarks. In this step, a client finds
the coordinates x = (x,y, h) that minimize the energy function. The starting point
can be initially selected randomly or fixed at the origin; for subsequent triangulation

steps, the triangulation can begin from the point computed by the previous one.

The problem of computing the coordinates that minimize some error function
determined by the estimates falls into the domain of unconstrained nonlinear pro-

gramming, a well-studied numerical problem in the literature [1, 35]. The nonlinear

30

optimization can be solved using a numerical method such as gradient descent, the
Nelder-Meade simplex algorithm (which requires a starting simplex of n + 1 points
in an n-dimensional space), or simulated annealing |35]. These techniques will find a
local minimum, not necessarily a global minimum, of a potential function.

We chose to use a gradient descent to find the coordinates in the triangulation
step. For gradient descent, we must find the gradient of the error function; since the
energy function corresponds to spring potential energy, by Hooke’s law, the “force”
should correspond to the spring force.

While a gradient descent may be implemented to travel along the direction of the
gradient to a one-dimensional minimum on that line [35|, we sacrifice this level of
exactness for efficiency and avoid solving this one-dimensional minimization problem.
Our step size in the gradient descent is chosen to be proportional to the magnitude of
the gradient of the error function. We find that the scaling of 1/n from the averaging
works well, and our experiments do not show any convergence failures, indicating that

our gradient descent is finding a local minimum as desired.

4.3.3 Strategy

Since we would like to compute accurate coordinates, even when up to f landmarks
are faulty, we will compute coordinates from the estimates to only f + L landmarks.
Thus, we remove landmarks from the triangulation computation until only f + L
remain. Up to f landmarks will be removed—fewer than f if some landmarks are
never heard from and thus the client has no estimate for them. Equivalently, we can
say that exactly f will not be included in the final round of computation, and those
landmarks that are never heard from were removed to begin with.

In the worst case, when all 2f + L landmarks respond, finding the subset of f+ L
that gives the absolute lowest error requires examining all (Qf;[L) = O((2f + L)Y)
possible subsets, an exponentially large number (because L is large, at least 10 or so).
Hence, it is impractical for even small values of f, such as 4, because the gradient
descent in the triangulation is not a cheap computation. Note that there is also

no guarantee that this optimal subset does not include faulty landmarks. (Since

31

we do not evaluate coordinates’ accuracy based on faulty landmarks, the optimal
coordinates for the client should be computed just with the estimates from the f+ L
honest landmarks, but since the client has no way of knowing which landmarks are
faulty, the exponential-time strategy is the best it can hope to do.)

Therefore, a client cannot practically find the absolute minimum over all possible
subsets of f + L landmarks. A client instead tries to find an appropriate subset of
landmarks that gives a low average error. To do so, we use intermediate triangulation
steps on certain larger subsets.

We use the following approximation. Given the coordinates computed from an
triangulation step, consider the average error to each landmark. That landmark
that contributes the most error is the one to be removed from the triangulation to
decrease the average error by the most, if the resulting coordinates are the same.
However, the resulting coordinates should be different, since removing a landmark
will change the set of landmarks and thus the error function. To justify removing this
landmark with the worst error, the approximation we use is that the new coordinates
are approximately the old coordinates.

We only remove one landmark at a time from the computation because the discrep-
ancy between new error function and the old error function grows with the number
of landmarks’ estimates removed from the error function. Our strategy thus takes at

most f + 1 rounds of the triangulation to compute the final coordinates.

Other strategies

We also studied an alternative strategy, using O((L + f) f) rounds of triangulation.
Again we iteratively remove one landmark’s estimate from the triangulation at a
time, but we select that estimate differently. If we have n estimates left, then for each
estimate, we tentatively remove it, leaving n — 1 on which to run the triangulation,
and see what the resulting error is. The one that is actually removed is the one whose
removal gave the lowest resulting error.

Although this alternative strategy is provably better when f = 1, as it does

evaluate all possible subsets of size f + L and choose the best one, we found that

32

it does not perform as well for larger values of f. We conjecture that it may be
because, given a choice between a region of coordinate space agreed on by mainly
honest landmarks and another region in accordance with mainly faulty landmarks, it
is easier for the coordinate to wander toward one or the other, and hence to become
lost in the faulty space.

Our strategy is thus a more practical approach to computing the coordinates that

minimize the average error.

4.4 Extensions

4.4.1 Estimate abstraction

As an extension to our system, to handle network faults, we dispense with the simpli-
fication that measurements are identified with estimates. Instead, each client main-
tains, for each landmark, its current estimate of the round-trip time to that landmark.
The estimates are undefined before any measurements take place. Estimates are up-
dated by measurements to the landmarks and are used by the coordinate computation.

There are two reasons to define this abstraction. First, there may be changes to
the network topology over time, including persistent network delays. Second, jitter,
the variance in network round-trip times due to queueing delays at routers, should
not unduly affect how coordinates are computed. Thus, the current estimate should
be able to adapt over time to reflect a new underlying round-trip time but should
also include elements of a low-pass filter.

Our system aggregates measurements over time to form estimates using an expo-

nential weighted moving average according to

estimate; 11 = (1 —) - estimate; +« - measurement; (4.1)

for some small fraction «. This method is similar to the predictors used in other sys-
tems; for example, TCP’s retransmission timer uses an exponential weighted moving

average to estimate a link’s round-trip time [24].

33

4.4.2 Certifiability and faulty clients

While our system addresses the problem of preventing faulty landmarks from de-
grading clients’ computed coordinates, it is also worth asking how to prevent clients
from choosing arbitrary coordinates. After all, in a locality-aware overlay network,
malicious clients inserting themselves into the coordinate space may make the cost
of communication more expensive for an application running atop the coordinates
by tricking honest nodes, close to the fictitious coordinates in the coordinate space,
into routing through them while they are in actuality far away, thereby defeating the

original purpose of the coordinates.

Our coordinates can be made self-certifying with a small amount of additional
communication that allows the landmarks to generate signed estimates for the clients
to collect. The landmarks also maintain estimates to the clients. These self-certifying

coordinates can be verified independently by any other node in the system.

To make measurements self-certifying, we modify the protocol as follows. Land-
marks also include a landmark nonce, nonces, in their pong messages. Once a client
has an estimate, it can send a guess mesage to the landmark with nonce; and its
current estimate, which is derived from its previous estimate and the new measure-
ment. The landmark verifies that the client’s estimate is within some tolerance of its
own. If it is, it replies with a check message in which it signs the client’s estimate (it
must use public key cryptography here in order for other nodes to be able to verify
the coordinates). The client then collects the signed estimates. The total number of

messages is doubled from our original protocol.

If the computation of coordinates from the set of estimates is deterministic, then
any node can compute the same set of coordinates from these signed estimates, which
suffice to certify the coordinates (though in practice the certificate should consist
of both the set of estimates and the derived coordinates). Elements of randomness
can be made deterministic by initializing from the same random seed, which can be
derived from the client’s ID. Thus, verifying a client’s self-certifying coordinates can

be done by checking the validity of the landmarks’ signatures on the estimates and

34

re-running the computation based on those estimates.

For certifiable coordinates, the additional resource burdens on the landmarks are
in storage and bandwidth—the current estimate, a single number, is stored for every
client, and approximately twice as much network bandwidth is used. Either can serve
to limit the number of clients our system can support.

Unfortunately, faulty clients can be choosy about which estimates they use in
their computation, especially in collusion with faulty landmarks. They can do so by
claiming that measurements to a certain subset of the landmarks had been dropped,
so that their coordinates were computed with only the remaining. Exactly how much
a faulty client can manipulate its own coordinates within these boundaries is a subject

for future work.

35

36

Chapter 5

Evaluation

To establish the feasibility of our approach to computing coordinates and determine
how accurate we were in the presence of Byzantine faults, we implemented a sim-
ulation of our system. We found that our system’s error in the presence of faulty
landmarks was comparable to the error for coordinates computed when no landmarks
were faulty. These results show that our system’s approach is valid. In this chapter,

we discuss our experimental setup, results, and interpretations thereof.

5.1 Simulation

Our simulation of our system is written in Java and consists of 1162 lines of code. It
uses an event-driven simulation to represent the delivery of messages in the steps of
this protocol and our own code for the gradient descent in the triangulation step.

Our simulation includes the modeling of the extra communications and computa-
tions needed to handle Byzantine clients, but we have not yet implemented a model
for the faulty client that tries to manipulate its own coordinates. As mentioned in
section 4.4.2, a faulty client may selectively ignore some of the measurements it re-
ceives in order to compute its coordinates. The simulation implements the simplified
protocol in chapter 4 that does not deal with estimates over time.

We used our simulation framework to study several adversarial models and eval-

uate our system’s effectiveness.

37

5.1.1 King data

To run our simulation on data consisting of actual Internet latencies, we used the
King dataset from the P2PSim project |9], containing 1740 DNS servers and the
actual measured round-trip times between them. The King method for collecting the
pairwise round-trip times was to make a recursive query to server A through server
B, and then make a query directly to server B, and compute the difference between
the round-trip times, as described in [11].

We ran our system on a sample of 100 nodes selected from the King dataset.

Since a small but nonzero fraction of the pairs of nodes in the King dataset do not

100

5) pairwise

have measurements between them, we selected our subset such that all (
measurements were present.

Vivaldi [6] was run on the 1740 nodes to generate the initial coordinates for land-
marks to be used in simulations. This is not necessarily the best approach—it would
perhaps be more valid to generate the coordinates by computing network coordinates

on only the nodes in our sample or only the landmarks in an experiment—but it

provides a reasonable approximation.

5.1.2 Adversary

The Byzantine adversary we chose for this simulation is quite powerful. We assume it
has knowledge of all the inter-node round-trip times and that a malicious landmark is
able to increase or decrease measured round-trip times; this actually serves to simplify
our model because we do not require a lower bound constraint on the measurement
that a faulty landmark may return.

Because we did not know a priori what kind of attack on our system would be
most effective, we experimented with several different adversarial behaviors. In each
adversarial model, the delay is the discrepancy between what the correctly measured
round-trip time would be and the round-trip time that the client sees; delays can be
positive or negative. Every client is subject to attack. The adversaries we studied

are categorized below.

38

Constant delay: Malicious landmarks all cause measurements to be delayed by the

same length of time.

Random delay: Malicious landmarks independently randomly choose a length of
time to delay each message; the delay is chosen from a random distribution and

can be positive or negative.

Random target: Malicious landmarks independently randomly choose a target co-
ordinate for each client. Then, each landmark sets the delay so that the client
sees as its measurement the metric space distance between its coordinates and

the target.

Colluding target: Malicious landmarks randomly choose and agree upon a target

coordinate for each client, and set the delay similarly to the random target case.

The latter two kinds of adversaries are motivated by the “repulsion” attacker
in [13]; some other attack methods from that and other works [5] are not directly
applicable because they employ lying about a faulty node’s coordinates, which is not

possible in our landmark system.

5.2 Experimental methodology

Based on the discussion in section 3.1.1, we chose L = 10. Each different setting
of parameters was run in 200 experiments, each initialized with different random
seeds. In each experiment, out of the 100 nodes, 2f + L were randomly chosen to be
landmarks and the remainder were clients. We first ran the simulation with no faulty
landmarks as the control sample, and then with f faulty landmarks chosen randomly
from within the 2f + L, which we refer to as the ezperimental sample. The control
sample represents the best coordinates that can be computed from the landmarks, so
that the choice of landmarks and the embedding error are controlled for, and just the

effect of introducing faulty landmarks and using our protocol can be measured.

39

5.2.1 Measuring accuracy

To understand how well our system prevented faulty landmarks from disrupting the
coordinate system, we studied several measures of error. The basis for our evaluation
of our system’s accuracy was the predicted and observed round-trip times between
clients and non-faulty landmarks. In the context of coordinates and measurements,
these values are defined for a client-landmark pair as follows.

Consider a client in an experiment. In the control sample, it computes its coor-
dinates to be x; in the experimental sample, it computes its coordinates to be x’.
For honest landmark ¢ with coordinates x;, the observed distance is p;, the measured
inter-node round-trip ping time; the control predicted distance is d(x,x;), as given
by the metric of the space; and the experimental predicted distance is d(x/, x;).

To determine how much our experimental computed client coordinates deviate
from the coordinates in the control sample, we considered our experimental sample’s
predicted distances relative to the control sample’s predicted distances. This closeness

is given by
ld(x',x;) — d(x,%;)|
d(x,x;) ’

where x’ is the client’s coordinate.
The relative error for the predictions, a measure of how accurate they are for pre-
dicting the actual round-trip latencies, is given by comparing the predicted distance

relative to the measured distance; it is

|d(x,xi) — pil
pi
for the control sample, and
|d(x', %) — pil
Di

for the experimental sample.

These closeness and relative error values are aggregated at the client level. That
is, in each experiment, each client’s closeness or relative error was computed for all

f + L honest landmarks, and the mean of these values was taken to be a data point

40

representing that client:

Closeness:

‘ -
A
x\
¥
|
U
”
¥

=

=

i) — d(
f +1L i€honest landmarks d(X, Xi)
1 d(x,%;) — pi
Control relative error: I Z dx, %) = pi (5.2)
f T i€honest landmarks pi
1 d(x', x; i
Experimental relative error: ~ —— () = pil (5.3)
f+L, pi
1€honest landmarks

Note that we measure accuracy using all the honest landmarks, but these might not
be the same set of landmarks used to compute the coordinates.
Finally, data for all the clients across all experiments with the same set of param-

eters is considered together.

5.3 Adversary type

In this section, we vary the type of adversary and fix the other parameters. Since the
adversary has no effect on the control sample, the result is that the control sample is
identical across adversaries. Hence, we compare just the experimental relative errors
to see which adversary is most effective at increasing them.

We first considered the constant delay adversary, with constant delays of —25,
—10, 10, 25, 50, and 100 ms added to the round-trip time measurement. Figure 5-1
compares the experimental relative errors (from formula 5.3) for each choice of delay
constant across different values of f; the mean, 10th percentile, and 90th percentile
across all clients in all experiments are plotted for each choice of the delay. There are
two conclusions to be drawn: first, the error is slightly worse for higher values of f;
second, the error is worse for higher delays. These numbers appear consistent with
Kaafar et al.’s observation that an attacker is not as effective when pulling nodes
toward itself as when pushing them away [13].

Next, we compare all the different adversarial behaviors, as shown in figure 5-2.
The random delay adversary chooses delays uniformly between —25 and 75 ms; the

targets for the random and colluding target adversaries are chosen randomly within

41

1.4 T T T T T T T
delay -25 +—e—
delay -10 +——<—
delay 10 ——— T
12 L delay 25 —&— T T |
' delay 50 —=— _
delay 100 —e— B B - T B
1 B B T T T .
S B T T T _
a; - - _ - _ T -
Q T T . -
z 08 B - - T T T T
T =
©
c
g 06} .
g_ [] []. [].
n| I L i ot &
0.4 - Lt i ><D“ ><d A ¥ T i ¥ T 4
[X ot o o ® [® ® ® ®
0.2 | B
O 1 1 1 1 1
2 4 6 8 10
f
|d(x',x1)—ps

Figure 5-1: ’ 2il for different delay values for a constant delay adversary. The
mean is shown with 10th-90th percentile error bars.

1.4 T . : : . : :
delay 50 —=—
delay 100 —e— |
random delay ——%— T
12 L random target —&— - _ 1
: colluding target +——x<— B - B
1r B N - T T i
S s T I
ZB' 0.8 | - - -
&) _ _ -
<
<
g 06} |
g— [] L] .
n " L
Ll | |
04 ™ i | n[|ht L | m o & & n
' * * ¥ ¥ * * ¥ X ¥ ¥
0.2 _
0 L 1 1 | |
2 4 6 8 10

A" i

Figure 5-2:)=Pil for different adversary types. The mean is shown with 10th—
90th percentile error bars.

42

a box in the coordinate space that bounds all the original coordinates computed with
Vivaldi. Again, the data shows error increasing somewhat with f. It is not surprising
that the colluding target adversary can make error worse than the random target
adversary, or, based on the previous comparison, that the random delay adversary
(for our choice of distribution) is less harmful than the constant delay adversary for

longer delays.

Based on our data, since the colluding target adversary seemed to cause the great-
est increase in error, especially as f increased, we considered the colluding target

adversary for the remainder of our evaluation.

5.4 Closeness

We analyze how close the predicted distances in the experimental sample are to the
predicted distances in the control sample. For each client, we plot its average close-
ness (formula 5.1) in figures 5-3 and 5-4 as probability and cumulative distribution
functions respectively. A closeness of 0 indicates that every predicted distance with
faulty landmarks is exactly the same as without. Some of a client’s predictions may
become closer to the observed value, but closeness considers them to be deviations

from the original control predictions.

We find that even for f = 10, at the 90th percentile, the error is quite low—90%
of clients have 27% or less average discrepancy in their predicted distances from the
control’s predicted distances. This result suggests that for the vast majority of clients,
the coordinates computed in the presence of faulty landmarks give approximately the
same information about the proximity of other nodes as the case there are no faults. It
is also clear that as f increases, the distribution of client closeness extends further out
as the experimental predicted distances approximate the control predicted distances

less well.

43

Fraction of clients

Cumulative fraction of clients

0.16

0.14

0.12

0.1

0.08

0.06

0.04 |

0.02

f=4 e
f=6 -
=8 - -
f=10 - ——~
— L = L A4
0.4 0.6 0.8 1

Average closeness to control predicted distances

Figure 5-3: Probability distribution of clients’ closeness.

0.9
0.8
0.7
0.6
05
0.4

03}

0.2

01 f

0.2 0.4 0.6 0.8 1
Average closeness to fair predicted distances

Figure 5-4: Cumulative distribution of clients’ closeness.

44

14 T T T T T T T T T
control —&—
experimental (colluding target) ———
12 . g
1r _
S o8} i
5]
[}
=
8
g 06 g
02 E
O 1 1 1 1 1

Figure 5-5: Relative error for experimental and control samples. The mean is shown
with 10th-90th percentile error bars.

5.5 Relative error ratio

To compare the experimental sample against the control sample, we show in figure
5-5 the mean and 10th and 90th percentiles of the relative error for clients in the
experimental and control cases. As expected, the control case remains unchanged as
f increases, but beyond f = 7 the mean of the relative error over the clients begins

to rise and is significantly outside the error bars.

For a more precise quantitative evaluation, for each client we divided its experi-
mental relative error by its control relative error to get that client’s ratio of average

relative errors,

1 3 |d(x', %3) — pil

f + L i€honest landmarks pi (5 4)
1 Z d(x,%;) — pi| '
J+L Di

i€honest landmarks

These ratios of average relative errors are plotted in figures 5-6 and 5-7 as probability

45

0.14 T T T T I
f=2 ——
f=4 -------
f=6 -
=8 -
0.12 210 ———
01} .
@
3 008 | -
o
5
c
S
S 006 .
i
0.04 .
0.02 .
0 =
0 2 2.5 3
Average experimental error / average control error
Figure 5-6: Probability distribution over clients of the relative error ratio.
1p]
09 | .
0.8 | .

06

Cumulative fraction of clients
o
(6)]
T

04 F
03 |]
02 |]
[f=2 1
[f=4 -~
01 f=6 ---------- -
[f=8 -
[P f=10 - -~
0 1 N N N N 1 N N N N 1 N N N N 1 N N N N 1 N N N N
0 0.5 1 1.5 2 25 3
Average experimental error / average control error
Figure 5-7: Cumulative distribution over clients of the relative error ratio.

46

and cumulative distribution functions respectively. Here, a ratio of 1 indicates that
the client’s experimental coordinates are, on average, just as good at predicting its
round-trip distance to honest landmarks as the control coordinates. A ratio less than
1 indicates the client’s coordinates are even better in the experimental sample than
in the control (this effect is not entirely accounted for by the closeness evaluation).
Our results show that the bulk of clients in the experimental sample have very close
to the same average relative error compared to the control. In fact, approximately half
of the clients have an average relative error that actually improves over the control.
Additionally, most of the clients do not have significantly distorted coordinates. For
f = 2, for example, at the 90th percentile, only 10% of clients were more than 23%
percent worse at predicting round-trip times to the honest landmarks than in the
experimental case. Similarly, for f = 6, 90% of nodes had less than 36% worse

relative error, and for f = 10, the 90% cutoff is at 75% worse error.

5.6 Summary

These results suggest that our system provides reasonably accurate coordinates even
when there are f faults, the maximum tolerated in the system. Compared to the case
when there are no faults, the resulting coordinates generally have a similar coordinate-
space view of the round-trip distances, and the average relative error either decreases
or increases by a small amount for all but a small fraction of the clients. However,

our system of 2f + L landmarks does become less effective as f increases.

47

48

Chapter 6

Related work

Although there are countless works in the literature, some of which use network
coordinates, that address the general problem of discovering location information in
a network, only a few address the possibility of malicious nodes in the system and
mitigating their effects on the rest of the system. We describe some of the relevant

works in this area below.

6.1 Network coordinates and positioning

There are three main kinds of network positioning systems, classified by their ap-
proach to computing location information: landmark-based coordinate systems, de-

centralized coordinate systems, and systems that do not use coordinates.

Landmark systems: GNP [21| was a seminal landmark system that showed the
then-surprising possibility of embedding network nodes into a low-dimensional
Euclidean space with low error. Each client in GNP minimizes an error function
using a simplex algorithm [20] to compute its coordinates. Virtual Landmarks
|32] uses a Lipschitz embedding, in which the n-dimensional coordinates are
the minimum distance to each landmark, and then applies principal component

analysis to reduce the dimensionality of the coordinates.

Several systems have a set of global landmarks, but nodes do not have to com-

49

municate with them directly. NPS [22] uses a hierarchical structure and is
based on GNP. In Lighthouse [25], each node computes its coordinates relative
to some neighbors (that do not have to be the landmarks), then transforms its

local-basis coordinates into the global basis for the coordinate space.

Decentralized systems: Vivaldi [6] is a frequently studied decentralized coordinate
system that introduced the notion of height vectors; it uses the spring poten-
tial energy function as a basis for computing coordinates. Big-Bang Simulation
[29] uses a model of force fields between points, in which points attract or re-
pel to reduce error. These two systems model a physical simulation in which
coordinates change to minimize the potential function. PIC [5] showed that
a node’s predictions of short distances and long distances were more accurate
when the neighbors were chosen to be close to the node or at random, respec-
tively, and that the best coordinates were computed from a mix of close and
random neighbors. PCoord [16] uses a similar observation to try to maintain
nearby neighbors in its computation; nodes use a simplex downhill algorithm
|20] to compute coordinates and the triangle inequality to estimate unmeasured

distances.

Non-coordinate systems: Meridian [36] does not use coordinates but places neigh-
bors into concentric rings based on their measured distance; it appears to focus
on the problem of routing in overlay networks. Octant [37] is a system for geolo-
cating nodes, rather than placing them with respect to each other in a synthetic
coordinate system; the interesting technique it uses is to define regions of cer-
tainty based on an error tolerance in each measurement and thresholding to

find a region of space consistent with sufficiently many measurements.

iPlane [18] and Netvigator [28] do not treat the network as a black box, but
use data about distances to intermediate routers from traceroute probes. iPlane
attempts to build a structural model of the network topology; Netvigator pro-
vides a service to locate nearby landmarks and guesses inter-node latencies by

using the triangle inequality on the two endpoints and any landmark.

20

6.2 Attacks

Kaafar et al. [13] helped to motivate this thesis by showing the vulnerability of Vivaldi
to malicious nodes in the system. They identified three possible adversarial behaviors,
which they called disorder, repulsion, and colluding isolation, and showed that even
with a small percentage of faulty nodes in the system, Vivaldi’s accuracy degraded
dramatically. Zage and Nita-Rotaru 38| classified adversarial behaviors as inflating,
deflating, or oscillating, based on whether they tended to cause nodes to incorrectly
move or fail to move in adjusting to measurements. They studied the effects of
different adversaries on Vivaldi and came to similar conclusions.

The adversary in PIC [5] is much more powerful; its behavior is determined by
an optimization problem to be as harmful as possible, and it is assumed to be able
to advertise false coordinates and decrease measurements within some limits. The
adversary uses the simplex algorithm [20] to solve a multi-dimensional optimization
problem over the coordinates and measurements for every malicious node.

We do not think that a more sophisticated attacker like PIC’s would change the
fundamental design of our system. However, there may be geometric weaknesses
we have not yet discovered that such an attacker might exploit. Furthermore, some
parameters, such as the number of landmarks needed to tolerate f faults, may need

to be adjusted to maintain an acceptable level of error.

6.3 Reducing error

Several works apply techniques for reducing error, often against malicious adversaries,

to construct new systems or to secure existing decentralized systems such as Vivaldi.

6.3.1 Triangle inequality violations

One source of embedding error encountered in Internet measurements is violations
of the triangle inequality, where for nodes a, b, ¢, the measured a—b latency plus

the b—c latency is less than the a—c latency. Any such nodes cannot be embedded

o1

without distortion in a metric space, which must satisfy the triangle inequality by
definition [27]. Yet in many datasets in the literature [34, 6, 32|, large fractions of
the node pairs (a,b) were subject to a triangle inequality violation, where some node
c existed such that d(a,c) + d(c,b) < d(a,b). Many such violations are attributed to
measurement uncertainty, but significant fractions (10-37% in some data sets [15])
had severe violations. Nevertheless, coordinate systems such as Vivaldi [6] are still
able to compute good coordinates when there are no faults, although a small fraction
of predicted distances will be inaccurate.

While many triangle inequality violations exist because of internet routing policies
[17], malicious nodes may also be a source of these inconsistencies. Some systems
therefore attempt to detect these violations to exclude measurements that violate the
triangle inequality.

Nodes in PIC [5] detect triangle inequality violations and iteratively remove neigh-
bors that show the worst violation from their coordinate computation until the re-
maining error is small.

Wang et al. [34] use the idea that measurements that give a high relative er-
ror between the predicted and observed distances are likely to cause severe triangle
inequality violations. Neighbors are ranked based on how likely they are to cause
triangle inequality violations, and the less likely half are kept in the computation.
Unlike PIC, the authors only consider the inherent triangle inequality violations in

the space, not malicious attackers.

6.3.2 Statistical analysis

Several other approaches use statistical analysis of the behavior of nodes’ coordinates
and how they change over time to predict when a measurement is anomalous and
thus more likely to be faulty.

Kaafar et al. [12] use Kalman filtering to detect errors that can be introduced by
malicious nodes. As a basis for correct behavior of coordinates over time, nodes use
filter parameters from a nearby trusted node, while trusted nodes only communicate

with other trusted nodes. Unfortunately, this approach relies upon an infrastruc-

92

ture of trusted nodes that are assumed never to be faulty; these nodes may need to
constitute as much as 8% of the system if they are chosen randomly [12].

Zage and Nita-Rotaru |38| use the technique of outlier detection, borrowed from
network intrusion detection systems. Spatial outliers are neighbors that report dis-
tances inconsistent with other neighbors, while temporal outliers are neighbors that
are inconsistent over time; outliers beyond a threshold are removed from the coordi-
nate computation.

Ledlie et al. [15] use latency filters on measurements from the same source, sim-
ilar to our notion of estimates, and update filters to make coordinates more stable
(rather than accurate). They also use a technique to incorporate measurements from
neighbors that may be in only infrequent communication, a useful adaptation for a

system that only includes passive measurements.

6.3.3 Voting

Veracity |30] is a system in which a node’s coordinates are verified by a verification
set, whose members approve the coordinates by measuring the round-trip time to
the node and checking that it is consistent with the coordinate space distance. To
prevent attackers from overrepresenting themselves, a node’s verification set is chosen
deterministically by hashing its [P address and looking up the value in a distributed
hash table [2].

Veracity assumes a constrained-collusion Byzantine attacker, as introduced in [3],
in which the faulty nodes are divided into small cohorts and only collude within their
cohort. This assumption makes it much easier to show the feasibility of voting, as the
faulty nodes are much less likely to collude to overwhelm a vote together. However,
since the authors assume a minimum of 10 distinct cohorts, and each contains less
than 10% of the nodes, it is a much weaker adversarial model than the Byzantine
adversary assumed by our work and others |5, 38]. Another drawback is that in
order to verify a node’s coordinates, one must must contact its entire verification set,

requiring an O(logn) DHT lookup for each of the set members.

23

o4

Chapter 7

Conclusion

We designed and implemented a landmark-based network coordinate system that is
able to provide accurate coordinates even when some of the landmarks are Byzantine
faulty. Still, the final word on fault-tolerant network coordinates is far from being
written.

Ideally, our system should not see accuracy decrease as f increases. That our ex-
periments show this to be happening indicates that we may not have chosen precisely
the number of landmarks to tolerate f faults. It is conceivable that could tolerate f
faulty landmarks with fewer than 2f + L landmarks when f is small; conversely, we
may want more than 2f + L landmarks for larger f to minimize the introduced error.

Because it was randomly determined which nodes were chosen as landmarks in
experiments, our results could potentially be stronger if our landmarks were carefully
selected to be well-distributed, although we attempted to control for this effect with
the control sample—our experiments to compare the cases with and without faulty
nodes each used the same selection of landmarks within our set of nodes. Conversely,
note also that we randomly selected which landmarks were faulty. In the future, we
plan to analyze a Byzantine attacker that has sufficient control to choose a particularly
bad set of landmarks to become faulty.

It is possible that better algorithms and strategies exist for coping with faulty
measurements. One motivation for using gradient descent for the nonlinear program-

ming in the triangulation in section 4.3.2 was its relative ease of implementation.

35

In the future, it may be preferable to use an existing dedicated package such as
OpenOpt [23] to solve the nonlinear programming problem in the triangulation step.
Merz and Priebe [19] also recently suggested a replacement for standard nonlinear
programming algorithms and claimed to perform better on computing network coor-
dinates. It may also be telling to compare the error in coordinates computed with
our estimate-removing strategy against the error from the exponential-time optimal
strategy.

More data about short-term variance in measurements due to effects like network
congestion may be gleaned by conducting larger-scale experiments on real networks
such as PlanetLab, though these real-time measurements will have the disadvantage
that it is more difficult for faulty landmarks in our experiments to decrease measured
distances on the Internet. We hope that also collecting data on bandwidth usage
may further support the argument for our system’s practicality for deployment on

Internet-scale networks.

26

Bibliography

1]

2]

3]

4]

5]

(6]

7]

8]

9]

[10]

Mordecai Avriel. Nonlinear Programming: Analysis and Methods. Prentice-Hall,
Inc., Englewood Cliffs, NJ, USA, 1976.

Hari Balakrishnan, M. Frans Kaashoek, David R. Karger, Robert Morris, and
Ion Stoica. Looking up data in P2P systems. Communications of the ACM,
46(2):43-48, 2003.

Miguel Castro, Peter Druschel, Ayalvadi J. Ganesh, Antony I. T. Rowstron, and
Dan S. Wallach. Secure routing for structured peer-to-peer overlay networks. In
OSDI °02: Proceedings of the 5th Symposium on Operating Systems Design and
Implementation, 2002.

Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In Pro-
ceedings of the 3rd Symposium on Operating Systems Design and Implementation
(OSDI), New Orleans, Louisiana, February 1999. USENIX Association.

Manuel Costa, Miguel Castro, Antony I. T. Rowstron, and Peter B. Key. Pic:
Practical internet coordinates for distance estimation. In 2/th International Con-
ference on Distributed Computing Systems (ICDCS), pages 178-187, 2004.

Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decen-
tralized network coordinate system. In Proceedings of the ACM SIGCOMM °04
Conference, Portland, Oregon, August 2004.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEFFE
Transactions on Information Theory, IT-22(6):644-654, 1976.

R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation
onion router. In 13th USENIX Security Symposium, San Diego, CA, USA, Au-
gust 2004.

T. M. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling. P2PSim: A simulator
for peer-to-peer protocols. http://pdos.csail.mit.edu/p2psim/, 2004.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281—
308, 1988.

o7

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: Estimating la-
tency between arbitrary internet end hosts. In Proceedings of the SIGCOMM In-
ternet Measurement Workshop (IMW 2002), Marseille, France, November 2002.

Mohamed Ali Kaafar, Laurent Mathy, Chadi Barakat, Kavé Salamatian, Thierry
Turletti, and Walid Dabbous. Securing internet coordinate embedding systems.
In Proceedings of the ACM SIGCOMM 07 Conference, pages 61-72, 2007.

Mohamed Ali Kaafar, Laurent Mathy, Thierry Turletti, and Walid Dabbous.
Real attacks on virtual networks: Vivaldi out of tune. In LSAD ’06: Proceedings
of the 2006 SIGCOMM Workshop on Large-Scale Attack Defense, pages 139146,
New York, NY, USA, 2006. ACM.

Jon M. Kleinberg, Aleksandrs Slivkins, and Tom Wexler. Triangulation and
embedding using small sets of beacons. In Proceedings of the 45th Symposium
on Foundations of Computer Science (FOCS 2004), pages 444-453, 2004.

Jonathan Ledlie, Paul Gardner, and Margo Seltzer. Network coordinates in the
wild. In Proceedings of 4th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). USENIX, 2007.

Li-wei Lehman and Steven Lerman. A decentralized network coordinate system
for robust internet distance. In 3rd International Conference on Information
Technology: New Generations (ITNG), pages 631-637, 2006.

Eng Keong Lua, Timothy Griffin, Marcelo Pias, Han Zheng, and Jon Crowcroft.
On the accuracy of embeddings for internet coordinate systems. In IMC ’05:
Proceedings of the Internet Measurement Conference, pages 11-11, Berkeley, CA,
USA, 2005. USENIX Association.

Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas An-
derson, Arvind Krishnamurthy, and Arun Venkataramani. iplane: an information
plane for distributed services. In OSDI ’06: Proceedings of the Tth Symposium

on Operating Systems Design and Implementation, pages 367380, Berkeley, CA,
USA, 2006. USENIX Association.

Peter Merz and Matthias Priebe. A new iterative method to improve network
coordinates-based internet distance estimation. In ISPDC °07: Proceedings of the
6th International Symposium on Parallel and Distributed Computing, page 25,
Washington, DC, USA, 2007. IEEE Computer Society.

J. A. Nelder and R. Mead. A simplex method for function minimization. Com-
puter Journal, 7:308-313, 1965.

T. S. Eugene Ng and Hui Zhang. Global network positioning: a new approach to
network distance prediction. Computer Communication Review, 32(1):61, 2002.

T. S. Eugene Ng and Hui Zhang. A network positioning system for the internet.
In USENIX Annual Technical Conference, pages 141-154, 2004.

28

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Ukranian National Academy of Sciences. OpenOpt.
http:/ /scipy.org/scipy /scikits /wiki/OpenOpt.

V. Paxson and M. Allman. Computing TCP’s retransmission timer. RFC 2988
(Proposed Standard), November 2000.

M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti, and T. Harris. Lighthouses for
scalable distributed location. In 2nd International Workshop on Peer-to-Peer
Systems (IPTPS °03), 2003.

Sylvia Ratnasamy, Mark Handley, Richard M. Karp, and Scott Shenker.
Topologically-aware overlay construction and server selection. In Proceedings
of IEEE INFOCOM 2002, The 21st Annual Joint Conference of the IEEE Com-
puter and Communications Societies, 2002.

Walter Rudin. Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, Inc.,
New York, NY, USA, 1976.

Puneet Sharma, Zhichen Xu, Sujata Banerjee, and Sung-Ju Lee. Estimating
network proximity and latency. SIGCOMM Computer Communication Review,
36(3):39-50, 2006.

Yuval Shavitt and Tomer Tankel. Big-bang simulation for embedding net-
work distances in euclidean space. IEEE/ACM Transactions on Networking,
12(6):993-1006, 2004.

Micah Sherr, Boon Thau Loo, and Matt Blaze. Veracity: A fully decentralized
service for securing network coordinate systems. In 7th International Workshop
on Peer-to-Peer Systems (IPTPS 2008), February 2008.

Aleksandrs Slivkins. Distributed approaches to triangulation and embedding. In
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 640-649, 2005.

Liying Tang and Mark Crovella. Virtual landmarks for the internet. In Pro-
ceedings of the Tth ACM SIGCOMM Internet Measurement Conference, pages
143-152, 2003.

Liying Tang and Mark Crovella. Geometric exploration of the landmark selec-
tion problem. In Proceedings of Passive and Active Network Measurement, 5th
International Workshop, PAM 2004, pages 63-72, 2004.

Guohui Wang, Bo Zhang, and T. S. Eugene Ng. Towards network triangle in-
equality violation aware distributed systems. In IMC ’07: Proceedings of the Tth
ACM SIGCOMM Internet Measurement Conference, pages 175-188, New York,
NY, USA, 2007. ACM.

M. A. Wolfe. Numerical Methods for Unconstrained Optimization: an introduc-
tion. Van Nostrand Reinhold Company Ltd., New York, NY, USA, 1978.

29

[36]

[37]

[38]

[39]

Bernard Wong, Aleksandrs Slivkins, and Emin Giin Sirer. Meridian: a
lightweight network location service without virtual coordinates. SIGCOMM
Comput. Commun. Rev., 35(4):85-96, 2005.

Bernard Wong, Ivan Stoyanov, and Emin Giin Sirer. Octant: A comprehensive
framework for the geolocalization of internet hosts. In 4th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2007.

David John Zage and Cristina Nita-Rotaru. On the accuracy of decentralized
virtual coordinate systems in adversarial networks. In CCS °07: Proceedings

of the 14th ACM conference on Computer and Communications Securily, pages
214-224, New York, NY, USA, 2007. ACM.

Rongmei Zhang, Y. Charlie Hu, Xiaojun Lin, and Sonia Fahmy. A hierarchical
approach to internet distance prediction. In 26th International Conference on
Distributed Computing Systems (ICDCS), page 73, 2006.

60

