Collecting Distributed Garbage Cycles by Back Tracing

Umesh M aheshwari

Barbara Liskov

MIT Laboratory for Computer Science
545 Technology Square, Cambridge, MA 02139
{umesh,liskov}@Ics.mit.edu

Abstract

Systems that store objects at alarge number of sites require
fault-tolerant and timely garbage collection. A popular tech-
nigue is to trace each site independently using inter-site ref-
erencesasroots. However, thisfailsto collect cyclic garbage
spread across sites. We present an algorithm that collects
cyclic garbage by involving only the sites containing it.

Our agorithm is based on finding objects highly likely to
be cyclic garbage and tracing backward from them to check
if they are reachable from any root. We present efficient
techniques that make conducting such traces practical. The
algorithm collects al distributed cyclic garbage, is safe in
the presence of concurrent mutations, and has low space and
time overhead.

1 Introduction

Emerging distributed systemswill use objectsstored at alarge
number of sites. The scale of such systems poses new chal-
lenges to reclaiming the storage of objects unreachable by
applications. Such objects are known as garbage. A simple
way to collect garbage is to trace the graph of reachable ob-
jectsand then collect objects not visited by thetrace [HK82].
However, a global trace requires the cooperation of all sites
beforeit can collect any garbage.

Timely and fault tolerant collection requires that each site
tracelocal objectsand collect garbageindependently of other
sites. However, for alocal trace to be safe, object references
from other sites must be treated as roots. Thus, many dis-
tributed systems use local tracing in combination with some
variant of inter-sitereference countingto track inter-siterefer-
ences[Bis77, Ali85, Bev87, SDP92, 192, BEN193, ML 94].

Local tracing has the desirable locality property that col-

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval
Research, contract N0O0014-91-J-4136.

This paper appears in the ACM Symposium on Principles of Distributed
Computing, August, 1997. Copyright (©1997 by the Association for Com-
puting Machinery, Inc. Permission to make digital or hard copies of part or
al of thiswork for personal or classroom useis granted without fee provided
that copies are not made or distributed for profit or commercia advantage
and that new copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or afee. Request permissionsfrom Publications Dept, ACM
Inc., fax +1 (212) 869-0481, or permissions@acm.org.

lecting a garbage object requires the cooperation of only the
sitesit is reachable from. Locality resultsin good fault tol-
erance and timely collection because it avoids unnecessary
dependencies; if asiteis crashed, partitioned from others, or
otherwiseslow, it will delay the collection of only the garbage
reachable from its objects.

However, treating inter-site references as roots leads to
a problem: it does not collect mutually reachable garbage
objects located on different sites; such garbage is said to be
cyclic. Inter-site cycles are relatively uncommon, but they
do occur in practice. For example, hypertext documents
often form large, complex cycles. Collection of such cycles
is particularly important in long-lived systems because even
small amounts of uncollected garbage can accumulate over
time to cause a significant storage loss.

The challenge in collecting an inter-site garbage cycle is
to preserve locality, that is, to involve only the sites contain-
ing the cycle. This has proven surprisingly difficult. Most
previous schemes do not preserve locality. For example,
some conduct complementary global tracesin additionto lo-
cal tracing [Ali85, JJ92]. The drawbacks of global tracing
can be alleviated by tracing within groups of selected sites
[LQP92, MKI195, RJ96], but inter-group cycles may never
be collected.

Few schemes for collecting inter-site cycles have the lo-
cality property. The most prominent among theseisbased on
migrating objects so that cyclic garbage ends up in asingle
siteand is collected by local tracing [Bis77, SGP90, ML95].
However, migration is expensive and must deal with updat-
ing references to migrated objects; moreover, some systems
do not support migration due to security or autonomy con-
straints. Other local schemesare prohibitively costly or com-
plex [Sch89, LC97].

We present a practical scheme that has locality. It has
two parts. The first part identifies objects that are highly
likely to be cyclic garbage—the suspects. Wehavepreviously
designed a suitable technique for finding suspects using the
distance heuristic [ML95]. The second part checks if the
suspectsareinfact garbage. Thispart hasthe luxury of using
techniquesthat are too costly if applied to all objects but are
acceptableif applied only to suspects.

This paper describes a technique for checking suspects by
tracing back from a suspect to seeiif it is reachable from any
root. This approach preserves locality and scalability. Back
tracing was proposed earlier by Fuchs [Fuc95]. However,
this proposal assumed that inverse information was available
for references, and it ignored problems due to concurrent

mutations and forward local traces. We present efficient
techniques for conducting back tracing that handle these and
other practical problems. Our scheme computes the infor-
mation required to back trace, controls when to start a back
trace, and accounts for concurrent mutations and forward
traces. We show that the schemeis safe and collectsal inter-
site garbage cycles. Its space and time overheadsare low and
limited to suspected objects.

The rest of this paper is organized as follows. Section 2
describes the system model and loca tracing. Section 3
summarizes the distance heuristic for finding suspects. Sec-
tion 4 presents basic techniques for back tracing, Section 5
describes how the information required for back tracing is
computed, and Section 6 describes how concurrent muta-
tions and traces are handled. Section 7 summarizes related
work, and Section 8 contains our conclusions.

2 TheProblem Context

Our scheme is useful in systems that store persistent objects
over alarge number of sites. Objects contain references to
other objects, which may reside at other sites. Objects are
clustered within sites so that inter-site object references are
relatively uncommon.

Certain objects, designated as persistent roots, serveasen-
try pointsinto the object store. For example, anameserver or
adirectory object may be apersistent root. User applications
begin by accessing apersistent root and then traversing refer-
encesto access other objects. An application may mutate the
object graph by creating objectsand by inserting and del eting
references; therefore, it is called the mutator. A mutator may
traverse an inter-site reference by passing the referencein a
message from the source site to the target site.

A mutator may store a reference in a local variable out-
side the object store and retrieve the reference later; these
references constitute the application roots. In practice, ap-
plication roots are handled using techniques specific to the
application model. For simplicity, in this paper we will treat
application roots like persistent roots; Section 6.3 discusses
some related issues.

M utations may cause some objectsto become unreachable
from any persistent root; these are of no use to applications
and are said to be garbage, while other objects are said to
be live. The job of the garbage collector isto detect garbage
objects and reclaim their storage.

Local Tracing

Each site conducts alocal trace independently of other sites.
For alocal trace to be safe, it must not collect objects reach-
able from other sites. Therefore, it treats incoming inter-
site references as roots. Different methods may be em-
ployed to record inter-site references; e.g., one-bit reference
counts[Ali85, JJ92], weighted reference counts[Bev87], and
reference lists [Bis77, SDP92, BEN193]. We use inter-site

reference listing because it handles site failures and provides
better fault-tolerance for messages [ML94]. It works as fol-
lows.

Each site keeps a table of incoming references, called in-
refs. Each entry inthetable, called aninref, storesareference
and alist of source sitesknown to contain that reference. For
example, inFigure 1, site Rhasaninref ¢, whichindicatesthe
source sites P and Q. (An inref isidentified by the reference
it contains, so we say “inref ¢’ to denote the inref containing
c.) Thelocal collector traces from local persistent roots and
theinrefs. For simplicity, wetreat alocal persistent root asa
permanent inref.

siteP siteQ siteR
'efl aroot | [bP | [cPQ]
WS eqQ | [FR__| [gQ |
persistent i e Q *—o ¢
root
e d g
f
b [f
outrefs C e
g

Figure 1. Recording inter-site references.

Each site also keeps a table of outgoing references, called
outrefs. Theoutrefsare used ininserting and removinginrefs
asfollows. Suppose a site Q sends areference to site P and
the reference points to an object cin site R. Therecipient, P,
checkswhether c existsinitsoutrefs. If not, it enterscin the
outrefs and sends an insert message to the owner, R; when R
receives the message, it inserts P in the source list of inref c.
For safe execution, the sender Q retains its outref for ¢ until
R is known to have received the insert message. There are
various protocols for sending, deferring, or avoiding insert
messages while ensuring safety [SDP92, BENT93, ML 94].
We assume that a safe insert protocol exists and that the full
sourcelist of an inref can be found when needed.

A site P trims its outrefs during each local trace. After
the trace, P removes untraced outrefs and reports them to
their target sites in update messages; the target sites remove
P from the source listsin the inrefs for the given references.
Aninref with an empty sourcelistisremoved. Intheexample
in Figure 1, when Q does its next local trace, it will collect
d, drop its outref for e, and send an update message to P.
Then P will drop itsinref for e and collect e during the next
local trace. Thisillustrates the locality property: collecting
agarbage object involves only the sitesit is reachable from.

The problem with local tracing is that it fails to collect
cycles of garbage objects spread over multiple sites. For
example, inFigurel, Pand Qwill never collect fandgandaall
objectsreachablefromthem. Therefore, aseparate schemeis
necessary to collect inter-site cycles. Such a scheme should
have the following properties:

Safety: do not collect alive object.
Completeness: collect al garbage cycles eventually.
Locality: minimize inter-site dependence.

3 Heuristicfor Finding Suspects

The heuristic for finding objects likely to be cyclic garbage
may be unsafe: it may suspect some live objects, but good
performancerequiresthat few suspectsarelive. Theheuristic
must be complete in identifying all cyclic garbage. Further-
more, it must have little time and space overhead per object
since it must inspect alarge number of objects.

A suitable technique for finding suspects is the distance
heuristic [ML95]. The distance of an object is the minimum
number of inter-site referencesin any path from a persistent
root to that object. The distance of garbage is infinity. In
Figure 1, ¢ is reachable from root o through two paths: one
withtwo inter-sitereferencesand another with one; therefore,
itsdistanceis one.

Suspects are found by estimating distances. A distance
field is associated with each source site in an inref, and the
distance of theinref asawholeisthe smallest such distance.
When a new source is added to in an inref, its distance is
conservatively set to one. A persistent root is modelled as an
inref with zero distance. Thelocal trace propagates distances
from inrefs to outrefs. To do this, inrefsare traced in the in-
creasing order of their distances. When thetracefirst reaches
an outref, its distanceis set to one plusthat of the inref being
traced. Finally, changesin the distances of outrefs are sent
to target sitesin update messages, where they arereflected in
the corresponding inrefs.

As distances are propagated through local traces and up-
date messages, the estimated distances of cyclic garbagekeep
increasing without bound. The following theorem holds for
arbitrarily complex cycles: If al sites containing a cycle do
at least one local trace in a certain period of time, called a
round, then n rounds after the cycle became garbage, the
estimated distances of all objectsin the cycle will be at least
n.

Therefore, we select a suspicion threshold distance, D,
and regard objects with greater estimated distances as highly
likely to be garbage. Inrefswith distances less than or equal
to thethreshold —and objectsand outrefstraced from them—
are said to be clean. The remaining are said to be suspected.
The higher the threshold, the smaller the chance that sus-
pected objects might be live, but the longer it takes to detect
them.

The distance heuristic is complete because all cyclic
garbage is eventually suspected. Unlike previous heuris-
tics, its accuracy can be controlled arbitrarily. Heuristicsthat
suspect the inrefs not accessed recently are not suitable for
persistent stores since live objects might not be accessed for
long periods.

Since suspects might be live, they cannot be reclaimed
directly. Instead, another technique must confirm suspected

garbage before reclaiming it. The outcome of the this tech-
nique may be used to tune the suspicion threshold. For
example, if too many suspects are found live, the threshold
should be increased.

In an earlier paper, we suggested migrating the sus-
pects [ML95]. This paper presents a technique that does
not migrate objects.

4 Back Tracing

Thekey insight behind back tracing is that whether an object
is reachable from a root is equivalent to whether a root is
reachablefromtheobject if al referencesarereversed. Thus,
the idea is to trace backwards from a suspect: if the trace
encounters a persistent root, the suspect is live, otherwise it
is garbage.

The virtue of back tracing is that it has the locality prop-
erty. For example, aback trace started in atwo-site cycle will
involve only those two sites. Thisisin contrast to aforward
trace from the persistent roots, which is a global task. In-
deed, aglobal forward trace would identify all garbagein the
system, while a back trace checks only whether a particular
object is live. Thus, back tracing is not suitable as the pri-
mary means of collecting garbage. We expect most garbage
to be collected by local tracing and update messages. Back
tracing is a complementary technique to detect uncollected
garbage, and we use it for objects suspected to be on dis-
tributed garbage cycles.

Back tracing was proposed earlier by Fuchs[Fuc95]. How-
ever, this proposal assumed that each object was contained
in a site by itself and inverse information was available for
references, and it ignored problems due to concurrent mu-
tations and forward traces. We present practical techniques
for conducting back tracing. This section describesthe basic
technique, and Section 6 extends it to handle the problems
due to concurrent mutations and forward traces.

4.1 Back Steps

In practice, tracing back over individual referenceswould be
prohibitively expensive—both in the time required to con-
duct it and in the space to store the required information.
Therefore, aback trace leaps between outrefs and inrefs. For
brevity, we refer to inrefs and outrefs collectively as iorefs.
A back trace takes two kinds of steps between iorefs:

Remote steps that go from an inref to the corresponding
outrefs on the source sites.

Local steps that go from an outref to the inrefsit is locally
reachable from?.

The information needed to take remote steps from an inref
is already present in its source list. We do need extrainfor-

1A referenceis locally reachable from another if there is a path of zero
or more local references from the object referenced by the first to an object
containing the second.

mation to take local steps. We define the inset of areference
as the set of inrefs from which it is locally reachable. For
example, in Figure 2, in site Q, the inset of outref cis {a, b}.
We compute and store theinsets of outrefs so that back traces
may use them when required. Section 5 describestechniques
for computing insets efficiently.

siteP siteQ siteR
; cQ aP dQ
inrefs bR
a b
P d
ac c.ab b: d
outrefs ab

Figure 2: Insets of suspected outrefs.

A back trace consists of taking local and remote steps
alternately. For example, a back trace at outref ¢ in Q will
take local steps to inrefs a and b. From there, it will take
remote steps to outrefs a and b and so on.

In general, aback trace may be started from any suspected
ioref. However, a back trace started from an inref a will not
find paths to object a from other inrefs on the same site. For
example, in Figure 2, a back trace started from inref a will
miss the path from inref b to object a. On the other hand, a
back trace started from an outref c that is locally reachable
from a will find all paths to a because the set of inrefs that
c is locally reachable from must include all inrefs that a is
locally reachable from. Thus, if aback trace started from an
outref does not encounter a persistent root, all inrefs visited
by the trace must be to garbage objects. Therefore, we start
aback trace from an outref rather than an inref.

4.2 Howfartogo

A practical requirement on a back traceis to limit its spread
to suspected iorefs. Thus, rather than going all the way back
in the search for a persistent root, a back trace returns“Live”
assoon asit reachesaclean ioref. Thisrulelimitsthe cost of
back tracing to the suspected parts of the object graph in two

ways:

e We need to compute insets for suspected outrefs only.
e A back trace from a live suspect does not spread to the
clean parts of the object graph.

The rule has the disadvantage that back tracing will fail to
identify a garbage cycle until all objects on it are suspected.
Thisis not a serious problem, however, because the distance
heuristic ensuresthat all cyclic garbageobjectsareeventually
suspected. The next section describes the suitable time to
start aback trace.

4.3 Whento Start

A site starts a back trace from a suspected ioref based on its
distance. Thereisatradeoff here. A back trace started soon
after an ioref crosses the suspicion threshold, D, might run
into a garbageioref that is clean because its distance has not
yet crossed D and return Live unnecessarily. On the other
hand, a back trace started too late delays collection.

Here, we estimate a suitable back threshold D, to trigger
a back trace. Ideally, by the time the distance of any ioref
on a cycle is above D, those of other iorefs on the cycle
should be above D. If the distance of anioref y is D, and
thedistance from x to yis C, then the distance of x should be
a least D, — C. Therefore, an appropriate value for D is
D + C, where C is a conservatively estimated (large) cycle
length.

The use of back threshold is an optimization and does
not compromise completeness. If a back trace is started
prematurely in a garbage cycle, the trace might return Live
unnecessarily, but a future trace would confirm the garbage.
To this end, each ioref has aback threshold field initially set
to D,. When aback trace visitsanioref x, the back threshold
of x is incremented by, say, C. Thus, the next back trace
from x, if any, is triggered only when its distance crosses
the increased threshold. This has the desirable property that
live suspectswill stop generating back traces once their back
thresholds are above their distances. Garbage objects, on the
other hand, will generate periodic back traces until they are
collected.

4.4 Back Tracing Algorithm

Back tracing can be formulated as two mutually recursive
procedures. BackStepRemote, which takesremote steps, and
BackStepLocal, which takes local steps. Both are similar to
a standard graph search algorithm.

BackStepRemote (site P, referencei)
if i isnot in Inrefsreturn Garbage
if Inrefdi] isclean return Live
if Inrefdi] isvisited by thistrace return Garbage
mark Inrefdi] visited by thistrace
for each site Q in Inrefd[i].Sources do
if BackStepLocal(Q, i) isLivereturn Live
return Garbage
end
BackStepLocal (site P, reference o)
if oisnot in Outrefs return Garbage
if Outrefg0] isclean return Live
if Outrefg[0] isvisited by this trace return Garbage
mark Outrefg[0] visited by this trace
for each referencei in Outrefg[0].Inset do
if BackStepRemote(P, i) isLive return Live
return Garbage
end

If the reference being traced is not found among the
recorded iorefs, its ioref must have been deleted by the

garbage collector; so the call returns Garbage. To avoid
revisiting iorefs and to avoid looping, an ioref remembers
that atrace hasvisited it until the trace completes; if the trace
makes another call on the ioref, the call returns Garbage im-
mediately. Note that the calls within both for-loops can be
madein parallel. For example, inFigure 3, acal atinref cin
Rwill fork off two branchesto P and Q. One branch will visit
inref a first and go further back, while the other will return
Garbage.

) siteP siteQ siteR
inefs [a S] [bP | [cPQ]
longpath | @ T | b [The . d
from root MR A MR
[b a | c.b | d.cC |
outrefs | ca | || |

Figure 3: A back trace from d will branch.

An activation frame is created for each cal. A frame
contains the identity of the frame to return to (including the
caler site, etc.), theioref it is active on, a count of pending
inner callsto BackStep, and aresult value to return when the
count becomes zero. We say that atraceis active at an ioref
if it has a call pending there; we say that a trace has visited
anioref if theioref is marked visited by the trace.

This algorithm is ssimpler than Fuchs's [Fuc95]. Thisis
because Fuchs's algorithm is designed to detect garbage ob-
jects “on the way” even if the back trace was started from a
live object. We start back traces from objects highly likely
to be garbage and therefore do not incur the complexity of
Fuchs's optimization.

45 Collecting Garbage

If the outer-most call to BackStep returns Garbage, al inrefs
visited by the trace are garbage. However, when an inter-
mediate call returns Garbage, it cannot be inferred that the
corresponding ioref is garbage, because that call would not
have visited iorefs that have already been visited by other
branches in the same trace. For example, in Figure 2, the
call at inref b may return Garbage because inref a has been
visited, although b is not garbage. Therefore, no inref is
removed until the outer-most call returns.

When the outer-most call returns, the site that initiated the
back trace reports the outcome to al sites reached during
the trace, called the participants. We call this the reporting
phase. For the initiator to know the set of participants, each
participant appendsitsid to the response of acall. If the out-
come is Garbage, each participant flags the inrefs visited by
the trace as garbage. If the outcomeis Live, each participant
clearsthe visited marksfor that trace. Note that the outcome
islikely to be Garbage since the suspected objects are highly
likely to be garbage.

An inref flagged as garbage is not used as a root in the
local trace. Such an inref is not removed immediately in
order to maintain referential integrity between outrefs and
inrefs. Flagging the inrefs visited by the trace causes the
cycle to be deleted the next time the containing sites do a
local trace. The flagged inrefs are then removed through
regular update messages.

4.6 Message Complexity

Back tracing involvestwo messages for each inter-site refer-
enceit traverses—onefor thecall and another for itsresponse.
Finally, the report phase involves a message to each partici-
pant. Thus, if acycleresideson N sites and has E inter-site
references, 2F + N messages are sent. These messages are
small and can be piggybacked on other messages.

L ossof messages can be handled by suitably long timeouts
(possibly, after repeated query messages to find the status).
If a site waiting for a response to a call times out, it can
safely assume that the call returned Live. Similarly, if asite
waiting for the final outcome times out, it can assume that
the outcomeisLive.

4.7 Multiple Back Traces

Several back tracesmay betriggered concurrently at the same
or different sites. The site starting atrace assignsit a unique
id. Thus, the visited field of anioref stores a set of traceids.

Multipletracesmay beactivefor objectsonthe samecycle,
but thisis not likely for the following reason. The distances
of variousiorefsin acycle arelikely to be different such that
one of them will cross the threshold D first. Evenif several
iorefshavethe samedistance, therewill be differencesin real
time when they cross D, due to randomness in when local
traces complete. The time between successive local traces at
asite is long—on the order of minutes or more—compared
to thelittle amount of processing and messaging involvedin
a back trace—on the order of milliseconds at each site (or
tenthsof asecond if messagesare deferred and piggybacked).
Therefore, the first back trace started in a cycle is likely to
visit all other iorefsin the cycle before they cross D-.

There is no problem if one trace confirms garbage and
results in the deletion of an ioref when another trace has
visited it. The second trace can ignore the deletion, even if
its call is active there, because activation frames provide the
necessary return information.

5 Computing Back Information

Back information comprises the source sites of inrefs (for
remote steps) and the insets of outrefs (for local steps). The
source sites are maintained by the underlying scheme as de-
scribed in Section 2. Here, we describe the computation of
theinsetsof outrefs. Thisinformationiscomputed and stored
such that it is ready for use by back traces when they arrive.

We compute insets of outrefs by first computing their in-
verse, namely, the outsets of suspected inrefs. We define the
outset of a reference as the set of suspected outrefs locally
reachable from it. Outsets and insets are smply two differ-
ent representations of reachability information from inrefsto
outrefs.

Ideally, we want to compute outsets during the local for-
ward trace from suspected inrefs. However, a trace does not
providefull reachability frominrefsto outrefs. Thishappens
because a trace scans a reachable object only once, which is
crucia for its linear performance. For example, in Figure 4,
if aistraced before b, then the trace from a will visit z first.
Therefore, thetrace from b will stop at zand will not discover
the outref c.

siteQ

inrefs

>)
b N
Jou

%

E—

x
<

outrefs AL

Figure 4: Tracing does not compute reachability.

Therefore, we need to modify the trace from suspected
inrefsto compute outsets. We describe two techni ques bel ow:
thefirst is straightforward but may retrace objects, while the
second traces each object only once.

5.1 Independent Tracing from Inrefs

Thestraightforward techniqueisto trace from each suspected
inref ignoring the traces from other suspected inrefs. Con-
ceptually, each trace from a suspected inref uses a different
color to mark visited objects. Thus, objects visited by one
such trace may be revisited by another trace. However, ob-
jects traced from clean inrefs are never revisited. They may
be considered marked with aspecial color, black, that isnever
revisited.

Independent tracing from each suspected inref reachesthe
complete set of suspected outrefs locally reachable from it.
The problem with thistechniqueisthat objects may betraced
multiple times, and tracing objects is expensive in practice.
If there are n; suspected inrefs, n suspected objects, and e
references in the suspected objects, the complexity of this
schemeisO(n; x (n + e)) instead of the usual O(n + e).

5.2 Bottom-up Computation

Outsets of suspected inrefs may be found by computing the
outsets of suspected objects bottom up during the forward
trace. Outsets of suspected objects are remembered in an
outset table; once the outset of a suspect zis computed, it is

available when tracing from various inrefs without having to
retrace z.
Thefollowingisafirst cut at the solution:

TraceSuspected(reference x)
if x is marked return
mark x
Outset[X] :=null
for each reference zin x do
if zis clean continue loop
if zisremote add z to Outset[x] and continue loop

TraceSuspected(z)
Outset[x] := Outset[X] U Outset[Z]
endfor

end

The above solution does not work because it does not ac-
count for backward edgesin the depth first tree. For example,
in Figure 4, if inref aistraced first, the outset of zwould be
erroneously set to null instead of {c}. Since the outset of
inref b uses that of z, it would miss c aswell. In general, a
backward edge introduces a strongly connected component,
and the outsets of objects in a strongly connected compo-
nent should all be equal. Fortunately, strongly connected
components can be computed efficiently during a depth first
traversal with linear performance [Tar72]. For each object,
the algorithm finds the first object visited in its component,
called its leader. The agorithm uses a counter to mark ob-
jectsin the order they are visited. An auxiliary stack is used
to find the objects in a component.

The following agorithm combines tracing, finding
strongly connected components, and computing outsets. The
algorithm sets the outset of each object to that of its leader.

TraceSuspected(reference x)
if x is marked return
Mark[X] := Counter
Counter := Counter+1
push x on Stack
Outset[X] := null
Leader[X] := Mark[X]
for each reference zin x do
if zis clean continue loop
if zisremote add z to Outset[x] and continue loop
TraceSuspected(2)
Outset[x] := Outset[X] U Outset[Z]
Leader[x] := min(Leader[x], Leader[Z])
endfor
if Leader[x] = Mark[x] % x is aleader
repeat
z:= pop from Stack % z is in the component of x
Outset[Z] := Outset[X]
Leader[Z] :=infinity % so that |ater objects ignore z
until z=x
end

Thisalgorithm traces each object only once. Infact, it uses
O(n+e) timeand O(n) spaceexcept for theunion of outsets.
Intheworst case, if there are n,, suspected outrefs, the union

of outsetsmay take O (n, x (n+e)) timeand O(n, x n) space.
Below we describe efficient methods for storing outsets and
for implementing the union operation; these methods provide
near-linear performance in the expected case and thus make
bottom-up computation attractive.

First, the outset table maps a suspect to an outset id and the
outset itself is stored separately in a canonical form. Thus,
suspected objects that have the same outset share storage.
If objects are well clustered on sites, there will be many
fewer distinct outsets than suspected objects. Thisisbecause
there are expected to be many fewer outrefs than objects;
further, objects arranged in a chain or a strongly connected
component have the same outset.

Second, the results of uniting outsets are memoized. A
hash table maps pairs of outset ids to the outset id for their
union. Thus, redoing memoized unions takes constant time.
If a pair is not found in the table, we compute the union
of the two outsets. Another table maps existing outsets (in
canonical form) to their ids. If the computed outset is found
there, we use the existing id.

The various data structures used while tracing from sus-
pected inrefs are deleted after the trace. Only the outsets of
thesuspected inrefsareretained. Asmentioned, these outsets
are equivalent to keeping the insets of the suspected outrefs,
since one may be computed from the other. The space occu-
pied by insets or outsetsis O(n; x n,), wheren; andn, are
the number of suspected inrefs and suspected outrefs.

6 Concurrency

So far, we assumed that back traces used the information
computed during previous local traces and there were no
intervening mutations. In practice, a mutator may change
the object graph such that the computed back informationis
no longer accurate. Further, mutators, local forward tracing,
and back tracing may execute concurrently. This section
presents techniques to preserve safety and completeness in
the presence of concurrency. We divide the problem into
severa parts:

1. Keeping back information up to date assuming that muta-
tors, local traces, and back traces execute atomically, that
is, happen instantaneously without overlap.

2. Accounting for a non-atomic local trace: While the lo-
cal trace is computing back information, a mutator may
changethe object graph, or aback trace may visit the site.

3. Accounting for a non-atomic mutator: the mutator may
store areferencein avariable and retrieve it later without
starting at a persistent root.

4. Accounting for anon-atomic back trace: Even if back in-
formationiskept up to date at each site, aback tracemight
see an inconsistent distributed view because it reaches
different sites at different times.

6.1 KeepingBack Information up to Date

This section presents techniques for updating back infor-
mation conservatively while assuming that mutators, local
tracing, and back tracing execute instantaneously.

Back information may change due to reference creation
and deletion. We ignore deletions since doing so does not
violate safety; also, it does not affect completeness because
deletionsarereflected in the computation of back information
during the next local trace. On the other hand, reference
creations must be handled such that a back trace does not
miss a new path to a suspect. For example, Figure 5 shows
the creation of areferenceto z followed by the deletion of a
reference in the old path to z. If site Q does not update its
back information to reflect the new reference, but site Sdoes
alocal trace to reflect the deletion, a subsequent back trace
from g might return Garbage.

siteP siteQ siteR siteS
aroot] [b'P | [cQ | d R
gQ | [_FfR | [_eS | |
a b Y . C e e d
° !'/ oo o~—o<—o T
g z x f e
b:clean] [ccean | [dcean | [ed
| [_gf | [_fe |

Figure 5. Reference mutations (dotted lines).

In general, creating a reference involves copying a refer-
ence z contained in object x into object y.2 Supposex, y, and
zarein sites X, Y, and Z respectively, some or al of which
may be the same. If Xisthe sameas'Y, we say that the copy
is local; otherwise, we say it is remote. We discuss these
situations separately below.

6.1.1 Local Copy

A local copy is tricky to handle because it may change the
reachability from inrefs to outrefs although none of the ob-
jects involved might be associated with iorefs. In Figure 5,
creating a reference to z makes outref g reachable from inref
b. We maintain the following safety invariant.

Local Safety Invariant For any suspected outref o, o.inset
includesall inrefs o islocaly reachable from.

The key to maintaining this invariant is that in order to
create a new path to a suspect z, the mutator must have tra-
versedanold pathtoit. Thistraversal must includetraversing
an inter-site reference to a suspected object on the same site
since z must be reachable only through a suspected inref.
In the example shown, the mutator must have traversed the
reference to f. This provides an opportunity to patch back
information as follows.

2The creation of areferenceto anew object zmay be modeled as copying
areference to z from a specia persistent root.

Transfer Barrier When amutator transfers (or traverses) a
referencei to site Q, if Q hasasuspected inref for i, it cleans
inref i and the outrefsin i.outset.

We show below that the transfer barrier preserves the local
safety invariant. We use an auxiliary invariant: For any
suspected outref 0, o0.inset does not include any clean inref.
Thisinvariant holds right after alocal trace, and the transfer
barrier preservesit because whenever it cleans any inref i, it
cleansall outrefsini.outset. (Insetsand outsetsare consistent
since they are different views of the sameinformation.)

Proof of Local Safety Suppose a reference from x to z is
copied into y. This affects only the outrefs reachable from
Z any such outref o0 may now be reachable from moreinrefs
thanlistedino.inset. (If zisan outref itself, thenoisidentical
to z) We show that al outrefs such as 0 must be clean after
the mutation.

Object xmust have been reachablefrom someinref i before
the mutation. Since x pointed to z, outref o was reachable
frominref i as well. Therefore, if the local safety invariant
held before the mutation, either o was clean or o.inset in-
cludedi. Supposeo.insetincludedi. If x was reachable from
acleaninref i, the auxiliary invariant implies that o must be
clean. Otherwise, thetransfer barrier must have been applied
to some suspected inref i that X was reachable from. The bar-
rier would have cleaned al outrefsini.outset, whichincludes
osinceo.inset includesi. In either case, 0o must be clean after
the mutation.

O

Ouitrefs cleaned by the transfer barrier remain clean until
thesite doesthe next local trace. If aback tracevisitssuch an
outref before then, it will return Live. The back information
computed in the next local trace will reflect the paths created
due to the new reference. Therefore, if a back trace visits
later, it will find these paths.

It isimportant not to clean outrefs unnecessarily in order
that cyclic garbage is collected eventually. We ensure the
following condition for compl eteness.

Completeness Invariant An outref is clean only if it is
reachable from a clean inref or if it was live at the last local
trace at the site.

Proof of Completeness The invariant is valid right after
alocal trace. Thereafter, we clean outrefs only due to the
transfer barrier. Suppose applyingthebarrier oninref i cleans
outref 0. Then i must be live. Since o was reachable from
i when the last local trace was performed, o must be live at
that time.
O

In RPC-based systems, areference may be transferred to a
site as the target, argument, or result of aremote call. Thus,
thetransfer barrier may beimplemented by checking such ref-
erences. |n client-caching systemswhere objectsfrom multi-
ple servers may befetched into aclient cache [LACT96], the
barrier may be implemented by checking the transaction’s
read-write log at commit time.

6.1.2 Remote Copy

If areferenceto ziscopiedintoy at another site Y, we handle
it in one of the following ways depending on z

1. Object zisinsiteY:
Since Y received areferenceto zfrom another site, it must
have an inref for z, so the transfer barrier appliesto z

2. Object zisnot insite Y and Y has a clean outref for z
No update is necessary.

3. Object zisnotinsiteY and Y has a suspected outref for z:
Clean the outref for z

4. Object zisnot insite Yand Y has no outref for z:
Y creates a clean outref for zand sends an insert message
to Z, which enters Y in the source list of inref z. (Also,
the transfer barrier appliesto inref z.)

Each of these cases preservesthe local safety and compl ete-
nessinvariants. Only the last case resultsin the creation of a
new inter-sitereference. Here, apotential problemisthat the
insert message may arrivetoo late. We preservethefollowing
safety invariant.

Remote Safety Invariant For any suspected inref i, either
i.sourcesincludesall remote sites containingi, or at least one
of its corresponding outrefsis clean.

We ensure this invariant by using the following rule:

Insert Barrier If siteX sendsareferencezat ZtositeY and
Y does not have an outref for z, then X retains a clean outref
for zuntil Z hasreceived an insert message from Y.

If a back trace visits inref z before the insert message
reaches there, it will return Live from the clean outref. Oth-
erwise, it will find all outrefsfor z

Theinsert barrier isa small modification to the insert pro-
tocol described in Section 2. In systems that send the insert
message synchronously, site X is informed when the insert
message reaches Z [ML94]. Also, the insert barrier can be
modified to suit schemes that avoid insert messages; in fact,
little change is needed for systems using “indirect protec-
tion” [SDP92].

6.2 Non-atomic Local Tracing

M utations may change the object graph while the local trace
is computing back information. The computed information
must account for these mutations safely. Further, aback trace
may visit asite whileit is computing back information.

During a local trace, we keep two copies of the back in-
formation: the old copy retains the information from the
previous local trace, while the current trace prepares the new
copy. When this trace completes, the new copy replaces the
old atomically. A back trace visiting the site in the meantime
usesthe old copy. If atransfer barrier isapplied on aninref i
in this time, we clean the outrefsin i.outset in the old copy;
we also remember i and clean the outrefs in i.outset in the
new copy whenitisready. Thispreservesthe safety invariant
and preserves the following compl etenessinvariant:

Completeness Invariant An outref is clean only if it is
reachable from a clean inref or if it was live when the last
local trace began.

6.3 Non-atomic Mutator

A mutator may store a reference in a variable outside the
object store and retrieve the reference later. This raises the
following potential problem. In the context of Figure 5,
the mutator may traverse the remote reference f and store a
reference to, say, X in alocal variable. The transfer barrier
would then clean the outrefsin f.outset. If site Q doesalocal
trace now, it will revert inref f to its suspected status. Later,
the mutator may use the stored reference to copy z into y
without invoking the barrier.

The local safety invariant is preserved, however, because
local tracing views variables as application roots, which are
treated just like persistent roots. Asaresult, all outrefsreach-
able from them are cleaned. Thus, all outrefs that could be
affected dueto copying areference reachablefrom avariable
remain clean.

6.4 Non-atomic Back Tracing

So far we assumed that aback trace happensinstantaneously
such that it sees consistent back information at various sites.
In practice, aback trace may overlap with mutations, making
it unsafe even if back information is kept up to date at each
site. For example, in Figure 5, a back trace from g may visit
site Q before the mutator creates the reference, so that it does
not see the updated back information at Q. Yet the trace may
visit S after the mutator has deleted the old path and S has
done a local trace to reflect that. We use the following rule
to ensure asafe view.

Clean Rule When anioref iscleaned while atraceis active
there, the return value of thetraceis set to Live.
Thisruleimpliesthat if thereis any overlap in the periods
when an ioref is clean and when a trace is active there, the
trace will return Live. We show below that it ensures safety.

Proof of Safety

Suppose a mutator creates a new reference to a suspected
object z. To do this, the mutator must traverse an old path to
Z, we can represent this path as a sequence:;

S forfior o faoz

where f;, isan inter-site reference to an object in site Q: fo
isaclean object and the rest are suspected objects.

Thenew reference may affect back tracesvisiting an outref
o, reachable from z. Such atrace views the path above as a
seguence of iorefs:

— 40 —+00 i1 01— —ip, =20y

where i, and o, are the inref and the outref on site Qy; 4o
and o are clean, while the rest are suspected. (Note that an

intersite reference fj, correspondsto og_1 — 7x.) We show
that such a back trace is safe even if the mutator deletes the
existing path to z

Part |

If aback trace reacheso,, after the mutator has traversed
fn, it will find the updated back information as described in
Section 6.1. A potential problem occursif the mutationisa
remote copy; that is, z is a remote reference (corresponding
to 0, — in+1) @nd is copied to another remote site. A back
trace might visiti,, 1 beforetheinsert message reachesthere
and visit o,, after the outref has been reverted to its suspected
status. However, 4,,,1 must have received an insert message
in the meanwhile due to the insert barrier, so the clean rule
will set the return value of thetraceto Live.

Part 11

If aback trace reaches o,, before the mutator has traversed
fn, we show that the trace will return Live. The back trace
traverses the path to z backwards. Intuitively, either the back
trace will reach og, or the mutator and the back trace will
cross each other and the resultant overlap will causethe trace
to return Live. However, the proof is non-trivial because
a back trace visiting o, need not traverse the path in the
reverse order. Asmentioned in Section 4.4, aback trace may
fork parallel branchesto other iorefs and some branches may
overtake others. It istherefore not obviousthat there will be
anioref wherethe clean period dueto the transfer barrier will
overlap with the period when the back trace is active there.

For example, in Figure 6, a back trace from g will fork a
branchto site Q and another to site R. In one scenario, thefirst
branch might missthe mutator if it visits Rbefore the mutator
reachesthere; it might then return Garbageif inref eisalready
visited by the second branch. In another scenario, the second
branch might miss the mutator if the mutator has already
traversed past the inter-site reference to f and site R does a
local trace immediately after to revert the cleaned iorefs; the
second branch might then find the path deleted and return
Garbage. The two scenario are not possible simultaneously,
however, because the first requires the second branch to visit
R before the mutator, and the second requires it to visit R
later.

siteP siteQ siteR siteS
aroot| [b:P | [c Q@] [dR
gQ.R| [R | [esS [1
a by C e e d
. ;'/ e oo 8 1
o] [z x | IV e
b: clean C: clean d: clean e d
g: f fie
g e

Figure 6: A problem case.

Below we prove that there must be an overlap in general.

Theintuition is that if a branch of the back trace reaches o,
before the mutator reaches iy, then either some branch must
reach oj,_1 before the mutator reaches ¢;_1, or this branch
must return Live. We use the following notation:

my Themutator messagetransferring fi duringitstraversal.
br The message for the back call from 4,1 t0 0.

rr The message from oy, t0 i1 for returning the back call.
m.sent Thetimewhen message m was sent.

m.received The timewhen message m was received.
i.visited Thetimewheniy isfirst visited by the back trace.

The following relations hold:

R1 m.sent < n.sent < m.received < n.received,

i.e., we assume in-order delivery between a pair of sites.

R2 my_1.received < my.sent,for 1 < k < n.

R3 by.received < rg.sent, for al o visited by the back
trace.

R4 ij.visited < ry.sent, for 1 < k < n, provided
ri.sent < my.received. Before my.received, the mu-
tator could not have deleted the path i;, — o, S0 a back
trace will return from oy, only after 45, has been visited.

Very little processing is associated with receiving a mes-
sage before other messages may be received: The handler of
amutator message must atomically apply thetransfer barrier.
The handler of a back call must check if the ioref is clean.
Thus, the critical sections involved are very short. We show
that the following lemmas hold. Lemmas 1 and 2 specify
periods when an inref or an outref must be clean. Lemmas 3
and 4 specify periods when aback trace must be active at an
inref or an outref.

Lemmal Inref 45 isclean right after my.received.
Proof Thetransfer barrier cleans iy upon receiving my,. O

Lemma2 Outref
[my.received, my41.sent].
Proof The transfer barrier cleans o5, upon receiving my,.
The outref remainsclean until ;. doesthe next local trace or
until the mutator holdsavariablev fromwhere fy. 1 isreach-
able. Thus, o, must remain clean until the mutator transfers
fr4110 Qpy1. O

Lemma3 If the back
trace visits 7;, before my.received, it must be active there
during [iy.visited, min(my.received, r_1.received)].
Proof Before my.received, the mutator could not have
deleted the link o1 — 7. Therefore, when the trace first
visitsiyg, it will be activethere until it hasreceived aresponse
fromog_1. O

oy, is clean during

Lemma4 If the back trace visits oy, it must be active there
during [by.received, ry.sent].
Proof True by definition. O

Theorem If aback trace visits o, before the mutator visits
11, then either the back trace will return Live or it will visit
oy—1 before the mutator visits i1, for 1 < k < n.

10

Pr oof
Given by.received < my.received
if ri.sent > my.received
= [bg.received, r.sent] overlapsmy.received

= [trace active at o] overlaps[o;, clean| (Lemma4, 2)
= decideLive (Cleanrule)
else
= ri.sent < my.received
= i.visited < my.received (R4

if r._1.received > my,.received
= [ig.visited, r_1.received] overlapsmy.received

= [trace active at 7] overlaps[iy clean] (Lemma3, 1)
= decideLive (Cleanrule)
else
= rr_1.received < my.received
= rp_1.sent < myg.sent (RD

if rp_1.sent > my_1.received
= rp_1.sent overlaps[my_1.received, m.sent]
= [trace active at oy, —1] overlaps[ox_1 clean] (Lemmad, 2)

= decideLive (Cleanrule)
else
= r_1.8ent < myg_j.received
= bp_1.received < my_1.received (R3)

O

From the theorem above, if the back trace visits o,, before
the mutator visited 7,,, it must return Live or visit og. Since
og isclean, the trace will return Live.

We showed above that safety is ensured upon a single
mutation. We claim (without giving proof) that safety is
ensured upon multiple concurrent mutations as well.

7 Related Work

Previous schemesfor collecting inter-site garbage cyclesmay
be categorized as follows.

Global Tracing

A complementary global trace is conducted periodically
to collect cyclic garbage, while other garbage is collected
more quickly by local tracing [Ali85, JJ92]. The drawback
of global tracing isthat it may not complete in a system with
alarge number of faulty sites.

Hughes's algorithm propagates timestamps from inrefs to
outrefs and collects objects timestamped below a certain
global threshold [Hug85]. The persistent roots always have
the current time, and a global algorithm is used to compute
the threshold. The advantage of using timestamps over mark
bits is that, in effect, multiple marking phases can proceed
concurrently. However, asinglesitecan hold downtheglobal
threshold, prohibiting garbage collectioninthe entire system.

Central Service

Beckerle and Ekanadham proposed that each site send
inref-outref reachability information to a fixed site, which
uses the information to detect inter-site garbage cycles
[BE86]. However, the fixed site becomes a performance

and fault tolerance bottleneck.

Ladin and Liskov proposed a logically central but physi-
cally replicated service that tracks inter-site references and
uses Hughes's algorithm to collect cycles[LL92]. The cen-
tral service avoids the need for a distributed algorithm to
computethe global threshold. However, cycle collection still
depends on timely correspondence between the service and
all sitesin the system.

Subgraph Tracing

The drawbacks of global tracing can be alleviated by first
delineating a subgraph of objects reachable from an object
suspected to be cyclic garbage. Another distributed trace
is then conducted within this subgraph; this trace treats all
objects referenced from outside the subgraph as roots. All
subgraph objects not visited by thistrace are collected. Note
that a garbage cycle might point to live objects, and the
associated subgraph would include all such objects. Thus,
the scheme does not possess the locality property.

Lins et al. proposed such a scheme as cyclic reference
counting in a system that used reference counting for local
collection instead of local tracing [LJ93]. This scheme re-
quirestwo distributed traces over objectsin asubgraph. Jones
and Linsimproved the scheme such that multiple sites could
conduct tracesin parallel, but it required global synchroniza-
tion between sites [JL92].

Group Tracing

Another method to alleviate the drawbacks of global trac-
ing isto trace within agroup of selected sites, thus collecting
garbage cycles within the group. A group trace treats all
references from outside the group as roots.

The problem with group tracing is configuring groups in
order to collect al inter-site cycles. Lang et al. proposed
using a tree-like hierarchy of embedded groups [LQP92].
This ensures that each cycle is covered by some group, but
the smallest group covering, say, a two-site cycle may con-
tain many more sites. Further, the policy for forming and
disbanding groups dynamically is unclear.

Maeda et a. proposed forming groups using subgraph
tracing [MKI1795]. A group consists of sites reached transi-
tively from some obj ects suspected to be cyclic garbage. This
work was done in the context of local tracing and inter-site
weighted reference counting. Rodrigues and Jones proposed
an improved schemein the context of inter-sitereferencelist-
ing [RJ96]. One drawback of this approach is that multiple
sites on the same cycle may initiate separate groups simulta-
neously, which would fail to collect the cycle. Conversely,
a group may include more sites than necessary because a
garbage cycle may point to chains of garbage or live abjects.
Another problem is that group-wide tracing might never col-
lect al cycles. Since a group-wide traceis arelatively long
operation involving multiple local traces, it is not feasible to
cover all garbage cyclesin a system with many sites.

Schemeswith L ocality
Few schemesfor collecting cyclic garbage havethelocality

11

property. The oldest among these is migration. Theideais
to converge a suspected distributed garbage cycleto asingle
site: if itisindeed agarbagecycle, it will becollected by local
tracing [Bis77]. Since migration isexpensive, it is crucial to
use a good heuristic for finding suspects; we proposed the
distance heuristic in this context earlier [ML95]. However,
some systems do not support migration due to security or
autonomy constraints or due to heterogeneous architecture.
Those that do must patch references to migrated objects.
Shapiro et al. suggested virtual migration [SGP90]. Here, an
object changesitslogical spacewithout migrating physically.
However, alogical space may span anumber of sites, solocal
tracing must involveinter-site tracing messages.

Schelvis proposed forwarding local-reachability informa-
tion along outgoing inter-site references [Sch89]. Thisalgo-
rithm is intricate and difficult to understand; however, some
of its problems are apparent. The algorithm requires full
reachability information between all inrefs and outrefs (not
just suspected ones). An inref ¢ contains a set of paths in-
stead of source sites; each path indicates a sequence of inrefs
leading to 7. Collecting a cycle located on N sites might
take O(IV3) messages. Recently, Louboutin presented an
improved scheme that sends only O(N') messages [LC97].
However, it too requires full inref-outref reachability infor-
mation, and its space overhead islarger: eachinref i storesa
set of vector timestamps; each vector correspondsto apath i
is reachable from.

Back tracing was proposed earlier by Fuchs[Fuc95]. How-
ever, this proposal assumed that inverse information was
available for references, and it ignored problems due to con-
current mutations and forward local traces. A discussion
on back tracing, conducted independently of our work, is
found in the archives of the mailing list gclist@iecc.com at
ftp://iecc.com/pub/gclist/gclist-0596.

8 Summary and Conclusions

We have presented a scheme for collecting distributed
garbage cycles. The scheme has two parts: The first uses
the distance heuristic to find objects highly suspected to be
cyclic garbage. The second traces back from such an object
to check if it is reachable from a clean object.

A back trace spreads quickly by traversing inrefs and out-
refs rather than individual references. This requires the use
of reachability information between suspected inrefs and
outrefs. We presented an efficient technique to compute
this information during local forward tracing without trac-
ing objects multiple times. Storing thisinformation requires
O(n; x n,) space, where n; and n,, are the number of sus-
pected inrefs and suspected outrefs.

A site starts aback trace from a suspected outref when the
back trace is highly likely to confirm it as garbage. We pro-
posed a technique that reduces abortive attempts by waiting
until other inrefs and outrefs on the cycle are likely to have
been suspected as well. After a back trace completes, the

initiator site sends the outcome to other participating sites.
The trace requires very little processing at each site, and it
sends 2E + N small messages where E is the number of
inter-site references traversed and N is the number of par-
ticipants. Its message complexity is lower than that of any
previous scheme with locality. Multiple back traces may be
triggered concurrently; however, back traces spread quickly
enough that overlap is not likely.

Back traces are conducted concurrently with mutators and
forward local traces. We use two barriers to keep the back
information conservatively safe, yet we ensure that the bar-
riers do not prohibit the collection of garbage cycles. These
barriers are applied only when a mutator transfers references
between sites and are inexpensive. Keeping the back infor-
mation up to date at each siteis not sufficient because a back
trace may see an inconsistent distributed view. We ensure
that back traces see a safe view using short critical sections
and without sending additional messages.

Back tracing has some drawbacks. Firgt, it is more com-
plex than schemes based on migrating the suspects. Second,
it requires full reachability information between suspected
inrefs and suspected outrefs. Computing this information
requires a modified depth-first traversal of the suspected ob-
jects. Therefore, breadth-first copying collectorswould need
to perform a separate traversal for these objects.

Despite these drawbacks, back tracing is an attractive
scheme becauseit preservesthelocality property: the collec-
tion of a garbage cycle involves only the sites containing it.
It does not migrate objects and its overheads are lower than
other schemes with locality. Furthermore, it collectsall dis-
tributed garbage cycles. We designed this scheme for imple-
mentation in a large, distributed object database [LACt96].
Itissuitablefor emerging distributed object systemsthat must
scale to alarge number of sites.

Acknowledgements

We are grateful to Chandrasekhar Boyapati and Andrew Myers for
proofreading this paper. Boyapati pointed out a problem with our
handling of iorefs deleted by one back trace when another trace is
active there. Wethank the anonymous refereesfor their comments.

References

[Ali85] K. A. M. Ali. Garbage collection schemes for distributed
storage systems. In Proc. Workshop on I mplementation of Func-
tional Languages, pages 422—-428, 1985.

[BE8S6] M. J. Beckerle and K. Ekanadham. Distributed garbage
collection with no global synchronisation. Research Report RC
11667 (#52377), IBM, 1986.

[BENt93] A.Birrell, D. Evers, G. Nelson, S. Owicki, and E. Wob-
ber. Distributed garbage collection for network objects. Techni-
cal Report 116, Digital Systems Research Center, 1993.

[Bev87] D.l.Bevan. Distributed garbagecollectionusing reference
counting. In PARLE, volume 259 of Lecture Notes in Computer
Science, pages 176-187. Springer-Verlag, 1987.

12

[Bis77] P.B. Bishop. Computer systemswith avery large address
space and garbage collection. Technical Report MIT/LCS/TR—
178, MIT, 1977.

[Fuc9s] M. Fuchs. Garbage collection on an open network. In
H. Baker, editor, Proc. IWMM, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1995.

[HK82] P. R. Hudak and R. M. Keller. Garbage collection and
task deletion in distributed applicative processing systems. In
Conference Record of the 1982 ACM Symposium on Lisp and
Functional Programming, pages 168-178. ACM Press, 1982.

[Hug85] R.J. M. Hughes. A distributed garbage collection ago-
rithm. In Proc. 1985 FPCA, volume 201 of Lecture Notes in
Computer Science, pages 256-272. Springer-Verlag, 1985.

[J392] N.-C. Juul and E. Jul. Comprehensive and robust garbage
collection in a distributed system. In Proc. IWMM, volume 637
of Lecture Notesin Computer Science. Springer-Verlag, 1992.

[JL92] R. E. Jones and R. D. Lins. Cyclic weighted reference
counting without delay. Technical Report 28-92, Computing
Laboratory, The University of Kent at Canterbury, 1992.

[LAC*T96] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat,
R. Gruber, U. Maheshwari, A. Myers, and L. Shrira. Safe and
efficient sharing of persistent objects in Thor. In Proc. 1996
S GMOD, pages 318-329. ACM Press, 1996.

[LC97] S. Louboutin and V. Cahill. Comprehensive distributed
garbage collection by tracking the causal dependencies of rele-
vant mutator events. In Proc. ICDCS |EEE Press, 1997.

[LJ93] R. D. Lins and R. E. Jones. Cyclic weighted reference
counting. In K. Boyanov, editor, Proc. Workshop on Parallel and
Distributed Processing. North Holland, 1993.

[LL92] R.LadinandB. Liskov. Garbage collection of adistributed
heap. In Proc. ICDCS |EEE Press, 1992.

[LQP92] B.Lang, C. Queinniec, and J. Piquer. Garbage collecting
theworld. In Proc. POPL ' 92, pages 39-50. ACM Press, 1992.

[MKIT95] M. Maeda, H. Konaka, Y. Ishikawa, T. T. iyo, A. Hori,
and J. Nolte. On-the-fly global garbage collection based on partly
mark-sweep. In H. Baker, editor, Proc. WMM, Lecture Notesin
Computer Science. Springer-Verlag, 1995.

[ML94] U. Maheshwari and B. Liskov. Fault-tolerant distributed
garbage collection in aclient-server object-oriented database. In
Proc. PDIS |EEE Press, 1994.

[ML95] U. Maheshwari and B. Liskov. Callecting cyclic dis-
tributed garbage by controlled migration. In Proc. PODC, pages
57-63, 1995.

[RI96] H. Rodrigues and R. Jones. A cyclic distributed garbage
collector for network objects. In Proc. 10th Workshop on Dis-
tributed Algorithms, 1996.

[Sch89] M. Schelvis. Incremental distribution of timestamp pack-
ets — a new approach to distributed garbage collection. ACM
SIGPLAN Notices, 24(10):37-48, 1989.

[SDP92] M. Shapiro, P. Dickman, and D. Plainfosse. Robust,
distributed references and acyclic garbage collection. In Proc.
PODC, 1992.

[SGP90] M. Shapiro, O. Gruber, and D. Plainfosse. A garbage de-
tection protocol for arealistic distributed object-support system.
Rapports de Recherche 1320, INRIA-Rocquencourt, 1990.

[Tar72] R. Tarjan. Depth first search and linear graph algorithms.
S AM Journal of Computing, 1(2), 1972.

