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Abstract

There are currently two approaches to providing Byzantine-fault-tolerant state ma-
chine replication: an agreement-based approach, e.g., BFT, that uses communication
between replicas to agree on a proposed ordering of requests, and a quorum-based
approach, such as Q/U, in which clients contact replicas directly to optimistically
execute operations. Both approaches have shortcomings: the quadratic message cost
of inter-replica communication is unnecessary when there is no contention, and Q/U
requires a large number of replicas and performs poorly under contention.

This thesis present HQ, a hybrid Byzantine-fault-tolerant state machine replica-
tion protocol that overcomes these problems. HQ employs a lightweight quorum-
based protocol when there is no contention, but uses BFT to resolve contention when
it arises. Furthermore, HQ uses only 3f + 1 replicas to tolerate f faults, providing
optimal resilience to node failures.

We implemented a prototype of HQ, and we compare its performance to BFT
and Q/U analytically and experimentally. Additionally, in this work we use a new
implementation of BFT designed to scale as the number of faults increases. Our
results show that both HQ and our new implementation of BFT scale as f increases;
additionally our hybrid approach of using BFT to handle contention works well.

Thesis Supervisor: Barbara H. Liskov
Title: Ford Professor of Engineering

2



Acknowledgments

Firstly I’d like to thank my co-authors on the HQ Replication protocol, for their

invaluable assistance throughout the project: Daniel Myers, Barbara Liskov, Rodrigo

Rodrigues and Liuba Shrira. A great deal of thanks is extended to Barbara, Rodrigo

and Liuba, for laying the foundations for HQ before my time at MIT.

The reviewers for our OSDI paper, along with our shepherd Mema Roussopoulos,

provided valuable feedback in shaping the current incarnation of the protocol. My

co-authors and I would like to thank the developers of Q/U for their cooperation, and

the supporters of Emulab, which proved critical in running our experiments.

Thanks go to Dan for a huge effort in coding the BFT module, and much assistance

through the first version of the HQ protocol. On a personal level his presence as a

friend and lab-mate has been enormously beneficial in my first two years at MIT - as

a project partner, sounding board and bicycle technician.

I’d like to thank Jen Carlisle, homeslice and housemate extraordinaire, for the

many fun times and moral support.

I’m especially grateful to Teresa, for putting up with a boyfriend living on the

other side of the world, and always putting a smile on my face. Also to my parents

for their continued support and understanding, especially in the week leading up to

this thesis.

Finally I’d like to thank Barbara for her patience, careful thought, insightful

comments, and endless discussions on obscure protocol details. This thesis is as much

a product of her guidance as it is of my effort.

3



Contents

1 Introduction 8

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Model and Assumptions 13

2.1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 HQ Replication 17

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Normal-case Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Grants and Certificates . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Client protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Replica protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Contention Resolution 30

4.1 BFT Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Contention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Resolve Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4



4.4 Replica Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Additional State . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.2 Request Processing . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.3 BFT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.4 State Processing . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Client Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.1 Resolve Responses . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.2 Write Phase 2 Responses . . . . . . . . . . . . . . . . . . . . . 39

4.6 Impact on HQ Operation . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 View Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7.1 Failure to initiate BFT . . . . . . . . . . . . . . . . . . . . . . 42

4.7.2 Bad startQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Optimizations and Extensions 45

5.1 Hashed Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Optimistic Grants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Delayed Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Piggybacked Grants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Preferred Quorums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 State Transfer 53

6.1 Simple State Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.1 “Client” Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.2 Replica Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Hashed Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Checkpoints in BFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 Removing Checkpoints from BFT . . . . . . . . . . . . . . . . 58

6.3.2 Reliance on HQ for State Management . . . . . . . . . . . . . 59

6.3.3 Simplified BFT Protocol . . . . . . . . . . . . . . . . . . . . . 60

6.4 State Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5



6.4.1 Optimistic State Transfer . . . . . . . . . . . . . . . . . . . . 63

6.4.2 Replica Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4.3 “Client” Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Correctness 66

7.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 Starvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Symmetric Key Protocol 70

8.1 Non-Contention Authenticator Protocol . . . . . . . . . . . . . . . . . 71

8.2 Contention Resolution with Authenticators . . . . . . . . . . . . . . . 72

8.2.1 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2.2 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2.3 Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.3.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3.3 Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.4 State Transfer with Authenticators . . . . . . . . . . . . . . . . . . . 82

8.4.1 null backupCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9 Performance Evaluation 85

9.1 BFT Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 91

9.3.2 Non-contention Throughput . . . . . . . . . . . . . . . . . . . 93

9.3.3 Resilience Under Contention . . . . . . . . . . . . . . . . . . . 94

9.3.4 BFT Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6



10 Related Work 98

10.1 Fail-stop Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . 98

10.2 Byzantine Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . 99

10.2.1 Byzantine Agreement . . . . . . . . . . . . . . . . . . . . . . . 99

10.2.2 Byzantine Quorums . . . . . . . . . . . . . . . . . . . . . . . . 100

10.2.3 Hybrid Quorum Replication . . . . . . . . . . . . . . . . . . . 102

10.3 Further Developments . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11 Conclusions 104

7



Chapter 1

Introduction

Distributed information systems provide shared data access to multiple disparate

clients. These systems traditionally consist of a set of servers that store service

data, as well as providing functionality for clients to read and modify this shared

information. Typical deployments of distributed information systems may be a central

company database shared across multiple users, an online medical information system,

or a distributed filesystem such as NFS [41].

Multiple redundant servers (replicas) are used in these systems to provide reli-

ability when a subset of servers crash or are disconnected from the network. State

machine replication protocols [19, 44] are used to ensure that all functioning servers

provide a consistent view of the same system state. These protocols provide the

illusion that all operations are run at a single central server.

The increasing importance of distributed information services necessitates pro-

tocols to ensure correctness and availability of service data, not just when servers

crash or are disconnected, but also when they exhibit arbitrary or malicious behav-

ior. These so called Byzantine faults [18] may occur due to program bugs or attacks on

the system, and introduce additional challenges to reliability. Byzantine fault-tolerant

state machine replication protocols, notably the Castro and Liskov BFT protocol [7],

address the challenges posed by Byzantine faults.
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1.1 Motivation

Initial proposals for Byzantine-fault-tolerant state machine replication [36, 7] rely on

a primary replica to define a sequential order for client operations, and an agreement

protocol that runs amongst the replicas to agree on this ordering. Agreement typ-

ically takes place in three phases of communication, two of which require all-to-all

communication between replicas. Since a minimum of 3f +1 replicas are required for

the system to tolerate f Byzantine faults [3], an increase in the number of faults tol-

erated also leads to an increase in the number of replicas. This can pose a scalability

problem owing to message load scaling quadratically with the replica set size.

An alternative approach to Byzantine fault tolerance utilizes quorum communica-

tion, rather than agreement [26]. These protocols shift communication from replica-

to-replica to a client-based process. Each client optimistically contacts a quorum of

replicas that independently order each operation. These quorums, in the context of

Byzantine fault tolerance, are a set of replicas of sufficient size such that any two

quorums intersect on at least one non-faulty replica. If the ordering assigned by each

replica is consistent, then the operation is able to proceed. If orderings do not match,

a repair process is required to reestablish a consistent state.

Quorum-based schemes had previously been limited to a restricted read/blind-

write interface [24]. In these systems clients can read system state, or overwrite

existing state, but cannot execute operations where the results depend on existing

system state. Agreement protocols allow the execution of arbitrary general operations,

however, that may depend on current system state, rather than just overwriting an

object. General operations are far more powerful than blind writes, and allow the

implementation of any deterministic service, rather than a simple storage system.

In a recent paper describing the Q/U protocol [1], Abd-El-Malek et al. aim to

improve on the scalability of agreement approaches, and show how to adapt Byzan-

tine quorum protocols to implement efficient Byzantine-fault-tolerant state machine

replication, providing support for general operations. This is achieved through a

client-directed process that requires two rounds of communication between client and
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replicas when there is no contention and no failures. Q/U is able to perform writes

in only one phase when there is no interleaving of writes between clients.

Q/U has two shortcomings, however, that prevent the full benefit of quorum-based

systems from being realized. First, it requires a large number of replicas: 5f + 1 are

needed to tolerate f failures, considerably higher than the theoretical minimum of

3f + 1, as provided in BFT. This increase in the replica set size not only places

additional requirements on the number of physical machines and the interconnection

fabric, but it also increases the number of possible points of failure in the system;

Q/U can only tolerate one-fifth of replica machines being faulty, while BFT can handle

one-third.

Second, quorum protocols such as Q/U perform poorly when their optimism fails.

The optimistic approach fails when the ordering assigned by replicas to an operation

is not consistent. This most often occurs during write contention, where multiple

clients attempt to perform a write operation at the same time. Q/U clients use ex-

ponential back-off to resolve instances of write contention, leading to greatly reduced

throughput.

Table 1.1 shows average response time per request in Q/U, for both fetch and

increment operations, the equivalent of general read and write operations respectively

in BFT (and also HQ). Readily apparent is the significant performance degradation

for contending writes, with more than a 10x increase in delay for contending rather

than isolated writes, for four active clients. Performance under write contention is of

particular concern, given that such workloads are generated by many applications of

interest, such as databases or transactional systems.

1.2 Contributions

This thesis presents the Hybrid Quorum (HQ) replication protocol [9], a new quorum-

based protocol for Byzantine fault tolerance that overcomes the limitations of pure

agreement-based or quorum-based replication. HQ requires only 3f + 1 replicas,

and combines quorum and agreement-based state machine replication techniques to

10



Contending Clients
0 1 2 3 4

fetch
Isolated 320 331 329 326 –

Contending – 348 226 339 361

increment
Isolated 693 709 700 692 –

Contending – 1210 2690 4930 11400

Table 1.1: Average request response time for Q/U, in µs [1]. fetch and increment
operations are equivalent to reads and writes in HQ respectively.

provide scalable performance as f increases. In the absence of contention, HQ uses a

new, lightweight Byzantine quorum protocol in which reads require one round trip of

communication between the client and the replicas, and writes require two round trips.

When contention occurs, HQ uses the BFT state machine replication algorithm [7]

to efficiently order the contending operations.

HQ avoids quadratic message communication costs under non-contention opera-

tion, offering low per-message overhead and low latency reads and writes. HQ is able

to utilize symmetric key cryptography rather than public key, resulting in reduced

CPU overhead. Like Q/U and BFT, HQ supports general operations, and handles

Byzantine clients as well as servers. HQ is designed to function in an asynchronous

system; Byzantine fault tolerance in synchronous systems [37, 13] is an easier problem,

and not a concern of this work.

An additional outcome of this research is a new implementation of BFT. The

original implementation of BFT [7] was designed to work well at small f ; the new

implementation is designed to scale as f grows.

This document presents analytical results for HQ, Q/U, and BFT, and perfor-

mance experiments for HQ and BFT. These results indicate that both HQ and the

new implementation of BFT scale acceptably in the region studied (up to f = 5)

and that our new approach to resolving contention provides a gradual degradation in

throughput as write contention increases.

The contributions of this thesis and the HQ protocol are summarized as follows:

• Development of the first Byzantine Quorum protocol requiring 3f + 1 replicas,

11



supporting general operations and resilience to Byzantine clients.

• Introduction of a general Hybrid Quorum technique providing contention reso-

lution without performance degradation.

• Optimization of the BFT protocol, realizing increased performance and fault

scalability.

1.3 Overview

This thesis describes the design and implementation of a new hybrid approach to

Byzantine fault tolerance. Chapter 2 describes the system model and assumptions

on failures, communication, and cryptography used by the remainder of this thesis.

The basic HQ Replication protocol is introduced in Chapter 3. The mechanisms for

contention resolution are discussed in Chapter 4, including the view-change protocol

used when the BFT primary fails. Chapter 5 describes a number of optimizations

used to improve the performance of the basic algorithm described in earlier chapters,

along with extensions to support multi-object transactions. The state transfer pro-

tocol is presented in Chapter 6, used to bring slow replicas up to date with the most

recent system state. Chapter 7 argues for the safety and liveness of HQ Replication

under the assumption of public key cryptography. Chapter 8 then extends HQ Repli-

cation to operate with more computationally efficient symmetric key cryptography,

and discusses the correctness of the modified protocol. The performance of HQ is

examined both analytically and experimentally in Chapter 9, in comparison to both

BFT and Q/U. Related work is discussed in Chapter 10, with the thesis concluded

in Chapter 11.
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Chapter 2

Model and Assumptions

We present here an overview of the system model used in the following chapters. This

model defines the operations provided by the system, assumptions on node failures

and the communications infrastructure, and the cryptographic primitives available

for use by the HQ protocol.

2.1 Operations

HQ and BFT provide support for the execution of general operations. These are dis-

tinct from simple reads and blind writes to service state, as provided by some previous

protocols [26]. Reads and blind writes only allow directly reading or overwriting ob-

jects at the server. General operations, however, allow for the execution of complex

operations that may depend on current state at the server, and provide a far more

powerful interface.

We require all operations to be deterministic, i.e., given a serialized order over a set

of operations, each replica should obtain the same result in running each operation,

provided they have the same application state.

The terminology read and write are still used in this thesis to describe the general

operations provided by HQ and BFT—write operations may modify application state

while reads may not.

13



2.2 Failure Model

Our system consists of a set C = {c1, ..., cn} of client processes and a set R =

{r1, ..., r3f+1} of 3f + 1 server processes. Server processes are known as replicas

throughout this thesis, as they replicate the server application for reliability.

Clients and servers are classified as either correct or faulty. A correct process is

constrained to obey its specification, and follow the HQ or BFT protocol precisely.

Faulty processes may deviate arbitrarily from their specification: we assume a Byzan-

tine failure model [17] where nodes may adopt any malicious or arbitrary behavior.

We do not differentiate between processes that fail benignly (fail-stop) and those

suffering from Byzantine faults.

Correct system operation is guaranteed for up to f simultaneously faulty replicas.

Transient failures are considered to last until a replica is repaired and has reestablished

a copy of the most recent system state. No guarantees are offered beyond f failures,

and the system may halt or return incorrect responses to client operations.

No bound is placed on the number of faulty clients. It is assumed that application-

level access control is implemented to restrict clients writes to modify only application

state for which they have permission. A bad client is able to execute arbitrary write

operations on data it has permission to access, but cannot affect other application

data nor put the system in an inconsistent state.

2.3 Communication Model

We assume an asynchronous distributed system where nodes are connected by a

network infrastructure. We place very weak safety assumptions on this network—it

may fail to deliver messages, delay them, duplicate them, corrupt them, deliver them

out of order, or forward the contents of messages to other entities. There are no

bounds on message delays, or on the time to process and execute operations. We

assume that the network is fully connected; given a node identifier, any node can

attempt to contact the former directly by sending it a message.

14



For liveness, we require the use of fair links [47]; if a client keeps retransmitting a

request to a correct server, the reply to that request will eventually be received. Live-

ness for the BFT module used by HQ also requires the liveness conditions assumed

by the BFT protocol [7]. Notably, we assume that message delays do not increase

exponentially for the lifetime of the system, ensuring that protocol timeouts are even-

tually higher than message delays. Note that these assumptions are only required for

liveness. Safety does not depend on any assumptions about message delivery.

2.4 Cryptography

Strong cryptography is required to ensure correctness in the HQ protocol. Clients and

replicas must be able to authenticate their communications to prevent forgeries. We

assume that nodes can use unforgeable digital signatures to authenticate messages,

using a public key signature scheme such as DSA [31]. We denote a message m signed

by node n as 〈m〉σn . We assume that no node can send 〈m〉σn , either directly or as

part of another message, for any value of m, unless it is repeating a previous message

or knows n’s private key. Any node can verify the integrity of a signature σn given

the message m and n’s public key.

We assume that the public keys for each node are known statically by all clients

and replicas, or available through a trusted key distribution authority. Private keys

must remain confidential, through the use of a secure cryptographic co-processor or

otherwise. If the private key of a node is leaked, the node is considered faulty for the

life of the system.

Message Authentication Codes (MACs) [45] are used to establish secure communi-

cation between pairs of nodes, despite message transmission on untrusted links. Each

pair of nodes shares a secret session key, established via key exchange using public

key cryptography. The notation 〈m〉µx,y is used to describe a message authenticated

using the symmetric key shared by nodes x and y.

Chapter 8 shows how to avoid the use of computationally expensive digital sig-

natures under most circumstances. Signatures are replaced with authenticators—a
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vector of MACs between each pair of replicas. Authenticators do not provide the

same cryptographic guarantees as signatures, and hence changes must be made to

the HQ protocol to accommodate this, discussed in detail in Chapter 8.

We assume the existence of a collision-resistant hash function [39], h. Any node

can compute a digest hm of message m, and it is impossible to find two distinct

messages m and m′ such that hm = hm′ . The hash function is used to avoid sending

full copies of data in messages for verification purposes, instead using the digest for

verification.

Our cryptographic assumptions are probabilistic, but there exist signature schemes

(e.g., RSA [38]) and hash functions (e.g., SHA-1 [33]) for which they are believed to

hold with very high probability. Therefore, we will assume they hold with probability

1.0 in remainder of this thesis.

To avoid replay attacks, we tag certain messages with nonces that are signed in

replies. We assume that clients use a unique value for each nonce, with no repetition.
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Chapter 3

HQ Replication

This chapter describes the operation of the HQ Replication protocol in the absence

of write contention. We also introduce the system architecture, along with grants

and certificates, which are the fundamental constructs of the HQ protocol. Further

extensions to the base protocol are described in following chapters. We assume the

use of public key cryptography in this chapter. We modify the protocol in Chapter 8

to make use of less computationally expensive symmetric key cryptography.

3.1 Overview

HQ Replication introduces a hybrid model for state machine replication, providing

support for general deterministic operations. Under the normal case of no write

contention, it functions as per a quorum agreement scheme [1], albeit with fewer

replicas. Under write contention however the protocol adopts an agreement-based

approach, based closely on the BFT protocol [7]. The motivation for this design is

to exploit the low latency and communication overhead of quorum schemes under

normal operation, while employing Byzantine agreement to resolve contending writes

without significant performance degradation.

The HQ protocol requires 3f + 1 replicas to survive f failures, the theoretical

minimum. In the absence of failures and contention, write operations execute in two

phases, while reads complete in only one phase. Protocol communication is illustrated
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in Figure 3-1. Each phase consists of the client sending an RPC to each replica, and

collecting a quorum of 2f + 1 responses. Any two quorums intersect at at least f + 1

replicas, of which at least 1 is non-faulty. A quorum of matching responses, each

authenticated by a different replica, is denoted a certificate, and is used to prove

agreement in our system.

Client

Replica 0

Replica 1

Replica 2

Replica 3

Write 1 Write 1 OK Write 2 Write 2 OK

Figure 3-1: HQ Normal-case Communication

The main task of HQ is to ensure that client operations are consistently ordered

across a quorum of replicas. The two phases of the quorum protocol facilitate this

consistent ordering by assigning a timestamp (sequence number) to each operation,

and disseminating this ordering to a quorum of replicas. In the first phase a client

obtains a timestamp grant from each replica, ordering the client write operation with

respect to others. In the absence of contention or slow replicas, these grants will

match, and the client can compose them into a certificate to convince replicas to

execute its operation at the given timestamp. A write is complete once a quorum of

replicas has received this certificate and successfully replied to the client.

Timestamps in grants may not match, either when a replica is behind with re-

spect to the latest system state, when there is an operation outstanding that has not

yet completed the second phase of the protocol, or when there is write contention.

Progress is ensured in the first two cases by a special writeback operation, along with

state transfer, allowing a client to complete a request on behalf of another client, or

bring a replica up to date. When there is write contention however, different clients
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may be assigned the same timestamp from different replicas. Here the set of grants

is inconsistent, and we must use BFT to resolve the contention. Once contention

resolution has completed, each client operation will be consistently ordered across a

quorum of replicas, and the system continues under quorum mode.

3.2 System Architecture

The system architecture is illustrated in Figure 3-2. The HQ Replication code resides

as a proxy on the client and server machines. Application code on the client executes

operation requests via the client proxy, while the server application code is invoked

by the server proxy in response to client requests.

Client Client 
Proxy

Server 
Proxy Server
BFT

Server 
Proxy Server
BFT

Server 
Proxy Server
BFT

Client Client 
Proxy

3f+1
Replicas

Figure 3-2: System Architecture

The replicated system appears to the client application code as a single fault-

tolerant server. The client proxy ensures that all application requests are retried

until successful, and that the application only sees the results of operations that have

committed. Likewise, the server application code considers the system as a simple

client-server architecture, and is insulated from the agreement process by the server

proxy. The server application code must support three specific properties, however:

• The server application must support one level of undo, to reverse the effects

of the most recent operation. This is required to support reordering during

19



contention resolution, as discussed in Chapter 4.

• All operations executed by the application must be deterministic, to ensure

consistent state across a quorum of replicas.

• Application state must be available to the server proxy to facilitate state transfer

in Chapter 6. The proxy only needs access to this state, not knowledge of its

semantics.

The server proxies make use of the BFT state machine replication protocol [7] to

resolve write contention. BFT is not involved in the absence of contention.

3.3 Normal-case Processing

HQ proceeds without the use of BFT under the normal case of no write contention

and no failures. We present an unoptimized version of the non-contention protocol in

this section, with optimizations discussed in Section 5.4.

HQ supports multiple server objects, each serviced by its own instance of the

quorum protocol. Multiple objects are useful in providing finer write granularity, to

avoid contention through false sharing. We provide a scheme for running transactions

across multiple objects in Section 5.6, but assume in this section that each operation

concerns only a single object. Clients may only have one outstanding write opera-

tion on a particular object at a particular time1. Clients number each write request

sequentially, to avoid the replicas running the same operation more than once. Repli-

cas maintain state storing the latest sequence number for each client; this sequence

number may be requested by clients if necessary after a reboot.

3.3.1 Grants and Certificates

Grants represent a promise from a replica to execute an operation at a given time-

stamp, provided there is agreement on that ordering by a quorum of replicas. A grant

1As we support general operations, clients may batch multiple operations into a single logical
write operation, to avoid running the protocol multiple times.
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takes the form 〈cid, oid, op#, h, vs, ts, rid〉σr , where each grant is signed by a replica

with with id rid. It states that the replica has granted the client with id cid the

right to run an operation numbered op#, on object oid at timestamp ts. h is a hash

covering the operation, cid, oid and op#; it is used to check whether two grants refer

to the same client operation. vs is the viewstamp used by BFT when performing

contention resolution, as described in Chapter 4. A grant is later, or more recent,

than another if it has a higher viewstamp, or timestamp for grants in the same view.

A write certificate is simply a quorum of grants. It is valid if the grants are

from different replicas, are correctly authenticated (signed), and all other fields in

the grants are identical. A valid certificate proves that a quorum of replicas agree

to an ordering of a specific operation, and precludes the existence of any conflicting

certificate for the same viewstamp and timestamp. A replica will execute an operation

at a certain timestamp given a certificate with a current or more recent viewstamp,

regardless of whether it sent a matching grant itself. We use the notation c.cid, c.ts,

etc., to denote the corresponding components of write certificate c.

We say that two write certificates match if their constituent grants are identical

in all fiends except rid. Two certificates may hence contain grants from different

quorums of replicas, yet be functionally identical.

3.3.2 Client protocol

Write Protocol

Write requests are performed in two phases. In the first phase the client obtains a

grant from a quorum of replicas, each authorizing the client to perform the operation

at a specific timestamp. In the second phase the client combines a quorum of matching

grants into a certificate and sends these to the replicas, providing proof of a consistent

ordering. We provide mechanisms for progress when this ordering is not consistent

across replicas.

Pseudocode for the basic client write protocol is given in Figure 3-3, with the

protocol discussed in detail in the following sections.
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Protocol at client c to execute write operation op with arguments args.

• Phase 1.

1. Send 〈write-1, cid, oid, op#, op〉σc to all replicas

2. Wait for a quorum of valid (well-formed and correctly authenticated) replies of the
form 〈write-1-ok, grantTS, currentC〉 or
〈write-1-refused, grantTS, cid, oid, op#, currentC〉µc,r , or a single valid
〈write-2-ans, result, currentC, rid〉µc,r message.

3. Proceed according to one of the five conditions:

(a) Each replyi in quorum is a write-1-ok, all grantTSi.ts’s are equal and all
grantTSi.vs’s are equal:
Proceed to phase 2 with certificate built from grantTSi’s.

(b) Each replyi in quorum is a write-1-refused and all grantTSi.ts’s, all
grantTSi.vs’s, all grantTSi.h’s, and all grantTSi.cid’s are equal:
Perform a writeback on behalf of replica grantTSi.cid.

(c) grantTSi.ts’s or grantTSi.vs’s not all equal:
Perform a writeback to slow replicas with certificate with highest vs and ts.

(d) A write-2-ans message is received:
Proceed to phase 2 with certificate in write-2-ans message.

(e) All grantTSi.ts’s and grantTSi.ts’s equal, but grantTSi.cid’s or grantTSi.h’s
are not all equal:
Contention encountered, resolve using BFT.

• Phase 2.

1. Send 〈write-2,writeC〉 to all replicas, with writeC certificate from Phase 1.

2. Wait for a quorum of valid 〈write-2-ans, result, currentC, rid〉µc,r with matching
results and currentC’s.

3. Return result to the client application.

Figure 3-3: Basic client write protocol.

Write Phase 1 A client sends a write phase-1 request to all replicas in the form

〈write-1, cid, oid, op#, op〉σc . We note again that op# specifies the operation

number for this operation, incremented by the client each time it performs a write,

and used by the replicas to avoid replays. A separate invocation of the HQ protocol

exists for each object the operation is executed upon, as defined by oid.

Replicas may reply with a number of different responses, depending on their cur-

rent state:

• 〈write-1-ok, grantTS, currentC 〉, if the replica has no outstanding grants and
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has granted the next timestamp to this client. grantTS is a grant for the client’s

operation, and currentC is a certificate for the most recent committed write at

the replica.

• 〈write-1-refused, grantTS, cid, oid, op#, currentC 〉µc,r , if the replica al-

ready has an outstanding grant for a different client. The reply contains the

grant for the other client, along with the information in the current client’s

request, to prevent replays.

• 〈write-2-ans, result, currentC, rid〉µc,r , if the client’s write has already been

executed. This can happen if the client was slow and a different client com-

pleted the write on its behalf, using the writeback operation discussed below.

Here currentC is the certificate proving the client’s write committed at a given

timestamp.

Invalid responses are discarded—those where grantTS.ts is not equal to currentC.ts+

1, grantTS.vs < currentC.vs, currentC is not a legitimate certificate, µc,r is invalid,

or the grants do not match the original client request. After waiting for 2f + 1 valid

responses from different replicas, the client processes them as follows:

Success If the client receives a quorum (2f+1) of write-1-ok responses for the

same viewstamp and timestamp, then there is a consistent ordering for the operation.

It combines each grantTS into a certificate and uses this certificate to execute phase

2 of the write protocol, discussed in the following section.

Current Write Outstanding If the client receives a quorum of write-1-

refused responses for the same viewstamp, timestamp, and hash, but for a different

single cid, some other client has a currently outstanding write. This other client

should perform a phase 2 write to complete the operation, but to facilitate progress

in the presence of failed or slow clients, we allow this client to complete the second

phase on its behalf. We term this procedure a writeback, where a client advances the

state of the replicas on behalf of another client, while piggybacking its own request to

be executed once the writeback is complete. The client sends a 〈writeBackWrite,
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writeC, w1 〉 message to the replicas, where writeC is a certificate formed from the

grants for the other client, and w1 is a copy of its original write request. The replicas

will reply with their responses to the write-1, and the client repeats the phase 1

response processing.

Slow Replicas If the client receives grants with differing viewstamps or times-

tamps, it means that the replicas aren’t all at the same state, and some are behind in

executing operations. The client uses a writeback operation to bring the slow replicas

up to date with the latest system state, in doing so soliciting new grants from these

slow replicas. It again sends a 〈writeBackWrite, writeC, w1 〉, where writeC is

the certificate sent in the response with the highest viewstamp and timestamp. This

message is sent only to replicas that are behind with respect to this latest state.

Write Completed If the client receives any write-2-ans response then the

phase 2 write has already been executed on its behalf, courtesy of a writeback oper-

ation by a different client. It uses the certificate in this response to execute phase 2

at all other replicas, to solicit their phase 2 responses.

Contention If the client receives a quorum of responses containing grants with

the same viewstamp and timestamp, but otherwise different (notably for different

clients or operations), then contention has occurred. Here the grants are inconsistent,

and must be resolved by an instance of BFT. The client forms these inconsistent

grants into a conflict certificate and sends these to the replicas in a resolve request,

as discussed in Chapter 4. The responses to a resolve request are identical to those

for a write-1, and are handled by the protocol above.

Write Phase 2 Following the completion of phase 1 of the write protocol, the client

holds a quorum of matching grants to execute its operation at a given timestamp

and viewstamp. It combines these into a writeC certificate, and sends a 〈write-2,

writeC 〉 request to all replicas. The client waits for a quorum of valid responses of the

form 〈write-2-ans, result, currentC, rid〉µc,r , with matching results and certificates.
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The result is then returned to the calling application and the write is complete. The

client will receive this quorum of matching write-2-ans responses unless there is

contention, with this case discussed in Chapter 4.

Read Protocol

The client read protocol completes in a single phase in the absence of concurrent

writes. It consists of simply sending a request for data to all replicas, and returning

to the application if a quorum of matching responses are received.

The client sends a 〈read, cid, oid, op, nonce〉µc,r request to the replicas. The

nonce allows a client to distinguish responses between requests, and prevent replay

attacks. The µc,r MAC authenticates client c to each replica r, and is included to

support read access control at the replicas if desired2. The response to a read has

form 〈read-ans, result, nonce, currentC, rid〉µc,r , where nonce matches that in the

client request, and currentC is the certificate supporting the latest known state at

the replica. The MAC in the response ensures that a malicious replica does not spoof

responses on behalf of others.

Once a quorum of valid matching replies has been received, the client can re-

turn the result to the calling application. If the responses contain differing times-

tamps or viewstamps, the client needs to bring slow replicas up to date to receive a

matching quorum. This is done with a writeback operation, where the client sends

a 〈writeBackRead, writeC, cid, oid, op, nonce〉µc,r message to the slow replicas.

writeC is the highest certificate received in the read responses. Replicas will advance

their state to that reflected in writeC, and respond again to the read request.

A client may have multiple reads outstanding, and execute reads concurrently

with a pending write operation. A read operation may also be executed as a write, to

ensure progress where there are continual write operations that hinder the retrieval

of a matching quorum of read responses.

2We note that a bad replica may always leak user data, and hence access control cannot be relied
upon for privacy.
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Protocol at replica r to handle write protocol messages.

• Phase 1. On receiving 〈write-1, cid, oid, op#, op〉σc :

1. If request is invalid (incorrectly authenticated or op# < oldOps[cid].op#), discard
request. Resend 〈write-2-ans, oldOps[cid].result, oldOps[cid].currentC, rid〉µc,r if
op# = oldOps[cid].op#.

2. If grantTS = null, set grantTS = 〈cid, oid, op#, h, vs, currentC.ts+1, rid〉σr , and
reply with 〈write-1-ok, grantTS, currentC〉.

3. If grantTS 6= null, reply with
〈write-1-refused, grantTS, cid, oid, op#, currentC〉µc,r .

• Phase 2. On receiving 〈write-2,writeC〉

1. If request is invalid (incorrectly authenticated or
writeC.op# < oldOps[writeC.cid].op#) discard request. Resend
〈write-2-ans, oldOps[writeC.cid].result, oldOps[writeC.cid].currentC, rid〉µc,r if
writeC.op# = oldOps[writeC.cid].op#.

2. If writeC.ts > currentC.ts + 1, writeC.vs > currentC.vs, or no operation
corresponding to writeC.h exists in ops, perform state transfer and proceed to step
3.

3. Execute request corresponding to writeC.h from ops, to get result.

4. Store op#, writeC and result in oldOps[cid]. Set currentC to writeC. Set
grantTS to null. Clear ops except for write-1 corresponding to just-executed
operation.

5. Respond to client with 〈write-2-ok, result, currentC, rid〉µc,r

Figure 3-4: Basic replica write protocol.

3.3.3 Replica protocol

Here we detail the processing at each replica in executing the HQ protocol in the

absence of contention. Replicas discard any invalid requests, i.e., those that contain

invalid certificates or are improperly signed, and process remaining requests as de-

scribed in this section. Pseudocode for the basic replica write protocol is given in

Figure 3-4.

Replica State

Replicas must maintain state per object to ensure the correct serialization of client

requests. The protocol state required in the absence of contention is as follows:
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currentC A certificate supporting the latest state of the object. This is the certifi-

cate for the most recently committed write operation.

grantTS A grant for the next timestamp. If a client has a currently outstanding

write, this will be the grant sent to that client in the write-1-ok reply, other-

wise it will be null.

vs The current viewstamp. It is advanced each time the system performs contention

resolution or a view change occurs.

ops The set of write-1 requests that are currently active. This includes the request

that was granted the current timestamp, and any request that has been refused,

along with the most recently executed request.

oldOps A table storing the results of the most recent write for each authorized client.

This table maps cid to op#, along with the result and currentC sent in the

write-2-ans response.

Write Phase 1

As discussed previously, write requests take the form 〈write-1, cid, oid, op#, op〉σc .

If op# = oldOps[cid].op#, the request is a duplicate of the client’s most recently

committed write; the previous write-2-ans reply is retrieved from the client’s entry

in oldOps, and resent to the client. If op# < oldOps[cid].op#, the request is old, and

is discarded by the replica. If the request is contained in ops then it is a duplicate of

the currently outstanding write, and the replica responds with its previous write-1-

ok or write-1-refused response. This response can be recomputed based on the

standard phase 1 processing, as discussed next.

The replica appends any new valid request to ops. If grantTS = null, there is

no currently outstanding write, and the replica can grant the next timestamp to the

client. It sets grantTS = 〈cid, oid, op#, h, vs, currentC.ts+1, rid〉σr . The grant and

most recent certificate are sent to the client in a 〈write-1-ok, grantTS, currentC 〉

message.
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If grantTS 6= null then there is a currently outstanding write. The replica sends

a 〈write-1-refused, grantTS, cid, oid, op#, currentC 〉µc,r message to the client,

where grantTS is the grant that was assigned to the client with the outstanding

write, currentC is the most recent write certificate, and the remaining fields reflect

the current client request.

Write Phase 2

Phase 2 write requests consist only of a single write certificate, sent as 〈write-2,

writeC 〉. Unlike write-1, a write-2 may come from any node, not specifically the

client whose request is ordered by the certificate. This is used to ensure progress with

slow or failed clients, as previously mentioned, and is possible because the certificate

itself identifies the cid of the client that requested the operation, along with the

op#, oid and hash h uniquely identifying the operation. Note also that a replica

will process a write-2 operation regardless of whether it granted to the client in

the certificate—the certificate is enough to prove a quorum of replicas agree on the

ordering, regardless of the grants of any specific replica.

As with phase 1, old and duplicate requests are detected based on the op# in

writeC, by comparison with oldOps[cid].op#. Old requests are discarded while du-

plicate requests for the most recently committed write are serviced by returning the

write-2-ans response in oldOps[cid].

If the request is new and the certificate valid, the replica will make an up-call

to the server application code to execute the operation, as stored in ops. The

replica state must be current with respect to the requested operation—if writeC.ts >

currentC.ts+1 or writeC.vs > vs then the replica is behind and must perform state

transfer (described in Section 6) before executing the operation, moving to the most

recent view.

After receiving the results of the operation from the server application, the replica

updates its protocol state information. oldOps[cid] is updated to reflect the op# and

writeC in the request, along with the operation result. currentC is set to writeC and

grantTS to null to reflect the latest system state, with ops cleared to contain only
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the request just executed. The inclusion of the just-executed request in ops ensures

that a committed operation will persist through a concurrent instance of contention

resolution, as described in Section 4.4.2. The replica then replies to the client with

〈write-2-ans, result, currentC, rid〉µc,r .

Read Protocol

No specific client state is required to execute read operations, apart from correctly

authenticating the client. Upon receiving a 〈read, cid, oid, op, nonce〉µc,r request,

the replica performs an up-call to the server application code, to execute the read

operation op. The return value from this call is sent to the client in a 〈read-ans,

result, nonce, currentC, rid〉µc,r message, where nonce echos that in the client request.

Writeback

A 〈writeBackRead, writeC, cid, oid, op, nonce〉µc,r request or 〈writeBackWrite,

writeC, w1 〉 are simply a write operation paired with a subsequent read or write re-

quest. The replica first processes the writeC certificate as it would a write-2 request,

transferring state if necessary, but suppresses any response to the client indicated in

the certificate. This response will be returned to the originating client if it attempts

to complete its operation at a later time.

Following the writeback, the replica processes the bundled read or write oper-

ation as normal, returning the result to the client.
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Chapter 4

Contention Resolution

One of the major strengths of the HQ Replication protocol, with respect to existing

optimistic quorum replication protocols [1], is its ability to handle contending writes

without a significant degradation in throughput. HQ achieves this through the use

of the BFT protocol, which is used as a subroutine to resolve instances of write

contention. This chapter describes the use of the BFT module within HQ.

As in the previous chapter, we assume the use of signatures and public key cryp-

tography. Chapter 8 extends the contention resolution protocol to use faster symmet-

ric key cryptography. We also assume that the primary BFT replica is non-faulty,

Section 4.7 presents the view change protocol employed when this primary fails.

4.1 BFT Overview

We begin this chapter with a brief overview of the BFT protocol. The high-level

operation of BFT is described here to provide background for the contention resolution

protocol; further details on BFT are available in [7].

BFT is a Byzantine fault tolerant state machine replication protocol [15, 44]. It is

used to reach agreement on a series of client operations, amongst a set of at least 2f+1

replicas. Agreement is coordinated by a replica that is denoted the primary. The

term view is used to describe a system configuration with a particular primary. The

BFT protocol moves through a series of views [34], each denoted by a view number ;
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the primary for a given view determined based on the view number. Replicas remain

in the current view unless the primary replica is suspected of being faulty. If the

primary is not coordinating the agreement protocol in a correct and timely way, the

other replicas will execute a view change, incrementing the view number and moving

to a new view.

Clients send write requests to all replicas, and wait for f + 1 matching responses.

The replicas must reach agreement on a sequence number for each operation in or-

der, before executing the write operation and responding to the client. Agreement

proceeds in three phases:

pre-prepare The primary assigns a sequence number to the operation, and broadcasts this

sequence number, along with the current view number and operation hash, to

all replicas in a pre-prepare message.

prepare If a non-primary (backup) replica receives a new valid pre-prepare, it broad-

casts a prepare message to all replicas, indicating that it accepts the assigned

sequence number.

commit If a replica receives 2f +1 matching prepare messages, then at least f +1 honest

replicas agree on the sequence number. It broadcasts a commit message to all

replicas for the operation and sequence number.

A replica waits for 2f +1 matching commit messages, at which point it may execute

the operation, and send the result to the client. The three phases are required (un-

like two-phase agreement in non-Byzantine agreement protocols [34, 16]), to ensure

that knowledge of committed operations persists when view changes occur during

agreement.

Replicas maintain a log of agreement messages to facilitate state transfer to slow

replicas (replicas that did not participate in the most recent round of agreement), and

to ensure transfer of potentially committed operations to new views. A checkpoint

protocol is used to truncate this log. Checkpoints are snapshots of the application

state, taken at a particular sequence number, and signed by f + 1 replicas. Replicas
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exchange signed digests of these checkpoints at regular intervals. A checkpoint signed

by f + 1 replicas may be used to prove the validity of an application state snapshot,

and allows log entries for previous sequence numbers to be truncated. We discuss the

state management protocol in more detail in Section 6.3.

4.2 Contention

Write contention occurs when multiple clients attempt concurrent writes on the same

object, and are assigned the same timestamp. It is noted by clients when receiving a

quorum of conflicting grants in response to a write-1 request, as described in Section

3.3.2.

Not all instances of concurrent writes result in contention under the HQ protocol—

if a single client is assigned a quorum of matching grants, then competing clients will

use a writeback request to complete their writes, without the need for contention

resolution. Moreover, contention may be observed where there are in fact no clients

competing for the same timestamp. This can occur if a faulty client sends different

requests to each replica, causing a mismatch in the resultant grants, or a bad replica

responds with a new grant for an old or non-existent client request. In both cases

safety is not compromised, but a malicious entity can force the protocol to take the

slower agreement-based path of contention resolution.

Contention resolution utilizes BFT to reach agreement on the latest system state,

and set of conflicting writes. Armed with this information, the replicas deterministi-

cally order and execute the conflicting operations. The resolution process guarantees:

1. if the write second phase has completed for an operation o at timestamp t, then

o will continue to be assigned to t.

2. if a client obtains a certificate to run o at t, but has not yet completed the

second phase of the write protocol, o will run at some timestamp ≥ t.

It is possible in the second case that some replicas have executed o at timestamp

t, but the operation later commits at a higher timestamp. Hence replicas need to
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provide one level of undo, maintaining a backup to reverse the effects of the most

recently executed operation if it is reordered during contention resolution. While

the server application code must support this undo functionality, the undo is never

visible to the application code on the client side. The client application never sees

the results of an operation until the write protocol is complete, when a quorum of

matching write-2-ans responses has been received, at which point the operation is

committed and will retain its order.

4.3 Resolve Requests

Clients request contention resolution by sending a 〈resolve, conflictC, w1 〉 message

to all replicas. Here conflictC is a conflict certificate formed from the grants it

received in response to its write-1 request. A conflict certificate is analogous to a

write certificate, except that it proves that a quorum of replicas disagree on the client

or operation for a particular timestamp and viewstamp, rather than the agreement

proved by a write certificate. w1 is the client’s original write-1 request that led

to the conflict, included to ensure the client’s operation is executed as part of the

contention resolution process.

4.4 Replica Protocol

Contention resolution makes use of the BFT state-machine replication protocol [7],

which runs alongside HQ on the replicas, as in Figure 3-2. One of the replicas is

denoted the BFT primary, which is tracked by the HQ server code by the same

mechanisms as a client in BFT. The clients of the BFT protocol in our system are

not the HQ clients, but the HQ replicas themselves. Rather than using BFT to

order client operations, as was its original function, we use it to reach agreement

on a consistent set of replica state information. With consistent knowledge of all

conflicting operations, each replica can deterministically order the operations—thus

a single round of BFT orders and commits all currently contending writes.
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The protocol for using BFT to resolve contention is discussed in detail in the

following sections.

4.4.1 Additional State

We need to add additional state to replicas to support contention resolution, in ad-

dition to the local state maintained by the BFT protocol itself [7]. For each object

in the system, replicas maintain:

conflictC The conflict certificate that started the current instance of contention

resolution. If contention resolution is not active this will be null.

backupC The write certificate for the previous write operation. This is the certificate

for the write before the operation represented by currentC.

prevOp The information previously stored in oldOps for the client whose write re-

quest was most recently executed.

The latter two state items provide backups of the state, before the most recently

executed operation. They are used to restore the previous state if the latest operation

is undone during contention resolution.

We delayed discussion of viewstamps, first mentioned in Chapter 3, until now.

Viewstamps are used to provide compatibility with the BFT protocol, and represent

the ordering of operations within BFT. A viewstamp is a pair consisting of the current

BFT view number, along with the sequence number assigned by BFT to the most

recently executed operation. View number takes precedence over BFT sequence num-

ber in ordering, i.e., the viewstamp with the highest view number is considered most

recent, with BFT sequence number used to define ordering where the view numbers

are equal. Viewstamps are included in grants to ensure that each round of the HQ

quorum protocol runs in the same BFT view.
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4.4.2 Request Processing

A replica may execute only one concurrent resolve at a time. Resolve status is

indicated by conflictC; if it is non-null then contention resolution is in process and

we deem the replica frozen. A frozen replica will not respond to any further resolve

requests or client write operations; instead these will be buffered and processed after

resolution is complete. Write requests are postponed to ensure that replica state does

not change during resolution. read requests may be processed since they do not

impact protocol state.

A non-frozen replica processes a 〈resolve, clientConflictC, w1 〉 request as fol-

lows:

1. If clientConflictC.ts > currentC.ts + 1 or clientConflictC.vs > currentC.vs,

then the replica is behind with respect to the viewstamp and timestamp where

contention has occurred. It first brings itself up to date using state transfer

(described in Chapter 6), updating currentC, and then continues processing

the resolve request from step 2.

2. If currentC is more recent than clientConflictC, the conflict has already been

resolved. This is also the case if the viewstamps and timestamps in the two

certificates match, but the client request has already been executed according

to oldOps. The replica ceases processing the resolve and instead handles w1

the same way as a write-1 request, as described in Section 3.3.3.

3. If currentC is not more recent than clientConflictC, the replica stores

clientConflictC in conflictC, entering frozen mode. It adds w1 to ops if it

is not already there, to ensure the client write is ordered as part of resolution.

w1 might not already exist in ops if the client communicated its original write

request with other replicas than this one. The replica builds a signed 〈start,

conflictC, ops, currentC, grantTS 〉σr message and sends it to the replica that

is the current primary in the BFT protocol. This message is a summary of the

current protocol state known at the replica, it ensures that all replicas in the
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resolution process will be aware of all conflicting operations, the highest cur-

rent system state, and any outstanding grants across the 2f + 1 participating

replicas.

Contention resolution may fail to proceed after a replica sends a start message to

the primary, either when the primary is faulty, or if the client only sent the resolve

request to a subset of replicas. The replica detects this by a simple timeout mecha-

nism, and must rectify the situation to ensure it does not remain frozen indefinitely.

The replica broadcasts the resolve request to all replicas in the system. If they

have not previously acted upon the resolve request they will enter frozen state and

send a start message to the primary. This same mechanism is used to trigger a view

change where the primary is faulty, detailed in Section 4.7.

Note that if a replica receives a resolve message from another replica, it must

also set a timer and broadcast the request if the timer expires. This addresses the

scenario where a bad replica selectively freezes other replicas by forwarding them a

resolve request in isolation.

4.4.3 BFT Operation

The HQ proxy running on the primary waits to receive a quorum of valid start

messages, properly signed and containing legitimate certificates, including one from

itself. It then combines the quorum of start messages into a structure called startQ.

The HQ code at the primary acts as a client of the BFT module running on the same

machine, and sends startQ as an operation to run on the BFT service. This startQ

is used as the argument to BFT, and will provide global knowledge of the state to all

replicas that participate in BFT.

BFT will order the startQ operation with respect to any earlier request to resolve

contention, and conducts agreement among the replicas on this operation. Follow-

ing agreement, each replica will pass startQ to the HQ proxy code running on the

corresponding machine. This takes the place of executing an operation in the stan-

dard BFT protocol—unlike standard BFT, no execution response is send to the BFT
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client. The BFT module also passes the current viewstamp to the HQ proxy, which

has been incremented due to the running of BFT.

4.4.4 State Processing

Each replica participating in BFT is provided with a consistent view of system state

and all conflicting operations via startQ. This state must then be processed to order

the conflicting operations, and to resolve the contention.

The processing described in this section involves an additional phase of communi-

cation, to obtain grants for each operation. We are able to avoid this communication

by slightly modifying the BFT protocol; this is presented as an optimization in Sec-

tion 5.4.

In the following discussion we use the notation startQ.currentC, startQ.ops, etc.,

to denote the corresponding list of components in the start messages in startQ.

1. If startQ doesn’t contain a quorum of correctly signed start messages then

the primary must be faulty. The replica aborts processing of the new state,

and requests a view change, discussed in Section 4.7. When the view change

is complete, the replica sends its start message to the new primary, and the

BFT process is repeated.

2. The replica determines the most recent operation state, denoted as C, and

brings itself up to date with respect to this certificate:

(a) The replica first checks if a single operation already accumulated a quorum

of grants for the current timestamp. A client may be assigned a quorum of

matching grants but still detect contention since it can only wait for 2f +1

write phase 1 responses, some of which may conflict. This is exhibited in

the shared state by a quorum of matching grants in startQ.grantTS. In

this case, C is set to the certificate formed from the matching grants.

(b) If startQ.grantTS does not form a certificate, the latest valid certificate

is chosen from startQ.currentC, and stored as C.
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(c) The replica determines if its current state currentC is more recent than C.

This can occur if the replica did not contribute to the quorum of start

messages in startQ, and those that did had not yet received the write-2

request for the operation the replica most recently executed. It must then

undo the most recent operation; this is safe because the operation could

not have committed. It does so by making a call to the server application

code to undo the most recent operation on the application data, and then

restores its previous protocol state by setting currentC to backupC, and

replacing the corresponding client data in oldOps with that in prevOp.

(d) Finally the replica brings itself up to date by executing the operation

identified by C, if it hasn’t already done so. The replica must execute all

operations in order, so may need to run earlier operations if it is behind—

it obtains the necessary data via state transfer (described in Chapter 6)

from other replicas. Operations are executed as per normal operation, with

oldOps and currentC updated to reflect each new operation, although no

replies are sent to clients. Following this phase, all replicas participating

in contention resolution will have identical oldOps and currentC.

3. The replica builds an ordered list L of all conflicting operations that need to

be executed. L contains all non-duplicate operations in startQ.ops, inserted in

some deterministic order, such as ordered on the cid of the client that requested

each operation. Duplicate operations are detected based on entries in oldOps,

and ignored. Multiple operations from the same (faulty) client are also ignored,

with one operation per client selected based on a deterministic means, such as

the lowest operation hash. Entries in startQ.ops are signed by clients and hence

cannot be forged.

4. The replica needs a certificate to support the execution of each operation in

L. This is obtained using an additional phase of communication as follows.

(Section 5.4 provides an optimization to piggyback this phase along with BFT

operation).
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• A grant is created for each operation in L, with viewstamp vs set to that

returned by BFT, and timestamp corresponding to the order of each op-

eration in L. This set of grants is sent to all replicas.

• The replica waits for 2f + 1 matching grants for each operation in L from

other replicas, including one from itself. These are combined into a certifi-

cate for each operation.

5. The operations in L are executed in order, updating ops, oldOps, grantTS and

currentC for each as per write phase 2 processing.

6. With all operations executed and contention resolved, the replica clears conflictC

and replies to the w1 message in the resolve request that caused it to freeze,

if there was one. The reply to the resolve request is generated based on the

rules for processing a write-1 request; it will ordinarily be a write-2-ans.

4.5 Client Protocol

4.5.1 Resolve Responses

The response to a resolve request is processed by the client in the same way as the

response to a write-1 request, detailed in Section 3.3.2. Under all normal circum-

stances the w1 request will be executed during resolution, and the response will be

a write-2-ans. Exceptions to this may only occur if the client submits duplicate

operations, or an operation that was not part of the contention, in which case the

response will be a write-1-ok or write-1-refused. Responses from contention

resolution may differ when running the protocol with symmetric key authenticators

rather than public key signatures in messages, described in detail in Chapter 8.

4.5.2 Write Phase 2 Responses

As mentioned in Section 3.3.2, contention resolution may interfere with the responses

to a client’s write-2 request. This occurs when a client is executing phase 2 of
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the write protocol while contention resolution is requested by another client. It is

possible for a subset of replicas to accept the write-2 request before resolution

begins, but have the client’s operation reordered as part of the contention resolution

process. In this scenario the client may receive some write-2-ans responses for

its originally assigned timestamp, and later receive others for the new timestamp

and higher viewstamp after resolution. If the client receives a quorum of matching

responses it is done; otherwise it retries the write-2 with the highest certificate

received, soliciting a quorum of matching responses.

It is important to note that if a client ever receives a quorum of matching write-

2-ans responses, this operation has committed and will never be reordered at the

replicas. This is ensured by the quorum intersection property—if a client receives

2f + 1 write-2-ans responses for a given timestamp, f + 1 of these must be from

non-faulty replicas, and at least one of these must be a participant in contention

resolution, providing knowledge of the committed operation.

4.6 Impact on HQ Operation

Contention resolution affects the operation of the HQ protocol, in that multiple certifi-

cates may exist with the same timestamp but different viewstamps. This possibility

has no effect on write-1 or read processing, but does have an impact on write-2,

resolve and writeback messages.

If a replica receives a client request containing a valid certificate for the current

timestamp, but a higher viewstamp, the replica’s current tentative state must have

been superseded as a result of contention resolution. The replica rolls back its current

state by replacing currentC with backupC and replacing the most recently modified

entry in oldOps with the operation stored in prevOp. The replica then processes the

request received in the client’s message, updating vs. If the request is a write-2 or

writeback, and the replica does not have a copy of the corresponding operation, it

obtains the operation via state transfer as described in Chapter 6.

If a replica receives a client request with a certificate for currentC.ts+1, but with a
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viewstamp greater than currentC.vs, then contention resolution has occurred between

timestamps currentC.ts and currentC.ts + 1. Since the operation for currentC may

have been rolled back during resolution, the replica replaces currentC with backupC

and reverts state as above, then requests state transfer between currentC.ts and

currentC.ts + 1. It is safe to roll back currentC, since the f + 1 valid replicas that

participated in BFT for the new viewstamp must have a record of the operation

committed at currentC.ts.

4.7 View Changes

The primary replica of the BFT module is responsible for collecting start messages

into a valid startQ structure, and initiating a round of BFT to establish consistent

knowledge of contending state. The failure of the primary may halt contention resolu-

tion, and prevent system progress. We thus need a mechanism to change the primary

when such failures are detected.

The BFT protocol, as influenced by Viewstamped Replication [34], uses a view

change mechanism to change primaries. A simplified overview of the view change

protocol is presented as follows, with full details in [7]:

1. A replica sets a timer when it receives a client request that has not yet been

executed. Clients initially send requests only to the primary, but will broadcast

a write request to all replicas (who then forward the request to the primary)

after their own client timeout.

2. If the timer expires before the operation is executed, the replica freezes and sends

a view-change message to all other replicas. The view-change message

nominates the next primary p, which is chosen in round-robin order via p = v

mod R, for view v and replica set size R.

3. The new primary collects 2f + 1 view-change messages and sends a new-

view message to all replicas, establishing itself as the new primary.
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We build upon the BFT view change protocol to change primaries when failures

are encountered, providing both safety and liveness. There are two situations where

the primary may fail or misbehave: failing to correctly initiate the BFT protocol

after receiving a quorum of start messages, or sending an invalid startQ as the BFT

operation.

4.7.1 Failure to initiate BFT

A BFT replica only requires one timeout to initiate a view change. Once a replica

forwards a request to the primary, it can assume that it is the primary’s responsibility

to start the agreement process, and ensure the subsequent execution of the operation.

If this does not occur before the timeout, increased exponentially each view change

to prevent spurious view changes due to network delays, it is safe to perform a view

change. This is not the case in the HQ protocol, as addressed below.

The HQ module at the primary is unable to build a startQ structure and initiate

BFT until it receives a quorum of start requests from replicas. A bad client may

send a resolve message only to a single replica, halting progress regardless of the

primary. We thus need an additional timeout before the BFT view change timer

is started, this first timeout triggering the replica to broadcast the resolve to all

others. Once all replicas have seen the resolve, the BFT view change timer can be

started, since these replicas will send a quorum of start messages to the primary.

Since a replica always broadcasts the resolve message well before sending a view-

change, we guarantee that contention will be resolved (likely following a system

view change), ensuring no HQ module is left frozen.

The HQ view change protocol is as follows:

1. A replica starts a broadcast timer after it receives a resolve request from a

client and has sent a start message to the primary.

2. The broadcast timer stops when a BFT pre-prepare message is received cor-

responding to the current contending timestamp. The BFT module is required
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to notify the HQ proxy of the receipt of a pre-prepare. At this point the

BFT view change timer will start as part of the standard BFT protocol.

3. If the broadcast timer expires, the replica sends the resolve message to all

other replicas. It makes an up-call to the BFT module to start the BFT view

change timer, for the resolve operation corresponding to the current contending

timestamp.

4. If a replica receives a new resolve message via another replica rather than a

client, it immediately forwards the resolve to all replicas itself, and starts the

BFT view change timer. Note that the replica must broadcast the resolve

itself, since it cannot be sure the sending replica forwarded the resolve to a

full quorum of valid replicas.

5. If the view change timer expires, the BFT module will broadcast a view-

change message and proceed with the view change protocol. It must also

notify the HQ module: If the HQ code has not already done so, it forwards

the resolve message to all replicas. This ensures that all replicas are aware of

contention resolution in the case where a faulty primary sends pre-prepare

messages to less than a quorum of replicas, leading to an insufficient number of

replicas requesting a view change1.

6. BFT will ensure that view changes continue until a valid primary is chosen, and

the contention resolution operation is executed. The only additional communi-

cation required with the HQ proxy is notification of the new primary and view

number after the operation is committed.

1This is not a concern in the standard BFT protocol because the frozen replicas will halt progress
on any subsequent valid write request, ensuring a quorum of view-change requests. In HQ however
we must ensure that if the HQ module at one replica is frozen due to contention, contention resolution
for that timestamp must occur, otherwise the frozen replica will halt progress in the HQ quorum
protocol, unequipped with a view change mechanism.
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Appropriate Timer Values

It is important to maintain appropriate values for the broadcast and view-change

timers, to avoid spurious view changes, and to with minimize communication over-

head. The view change timer is handled internally by the BFT protocol, and follows

the protocol described in [7], doubling the timer each consecutive view change to

account for unknown message delays. Liveness is provided assuming message delays

do not indefinitely grow faster than the timeout interval.

The broadcast timer is less critical; an insufficient duration will cause replicas to

unnecessarily broadcast resolve messages, yet will not trigger a premature view

change. This timer is set to a multiple of the expected interval between resolve and

pre-prepare, measured experimentally with system deployment.

4.7.2 Bad startQ

The BFT protocol will not stop its view change timer until the current operation

has committed; the operation in BFT is the startQ corresponding to the current

contention timestamp. We need to add additional functionality to the protocol to

detect if this startQ is valid however, and trigger a view change otherwise. This is

achieved via a simple extension to the state processing following the round of BFT.

All replicas check the validity of startQ, and if it does not contain a quorum of

valid start messages, make an upcall to BFT to immediately send a view-change

request.
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Chapter 5

Optimizations and Extensions

This chapter details a number of optimizations to the HQ protocol, which result in

significantly improved performance. We also describe extensions to HQ Replication

to support the execution of multi-object transactions.

5.1 Hashed Response

In the unoptimized HQ protocol, each replica responds in full to a successful write-2

or read request. Under normal circumstances, however, the results in these messages

are identical, resulting in the transmission of at least 2f redundant copies of the

operation result. This is a particular concern when the operation result is large, such

as a file read. Instead we have clients identify a designated replica in a write-2 or

read request. The designated replica responds in full, while the others send a hash

of the operation result, rather than the result itself. Matching hashes are sufficient

to identify a successful operation, and the client can retry with a different designated

replica if it doesn’t receive a full copy of the result in the first 2f + 1 responses.

This optimization is only of utility where operation results are of appreciable size.

For applications where results are small, the computational overhead of computing

result hashes is not justified by the bandwidth savings.

45



5.2 Optimistic Grants

The HQ protocol supports general operations, which may take significant time to

execute at each replica. A simple optimization is to allow replicas to respond to any

write-1 request while this execution in process. This is equivalent to a scenario

where the replica executed the previous operation extremely quickly, and hence does

not compromise correctness. The replica cannot respond to a write-2 request until

the execution has completed, however, to ensure a serial execution of operations.

5.3 Delayed Certificates

Certificates are included in responses to write-1 and read requests to allow clients

to perform a writeback to slow replicas. They are also included in write-2-ans

messages in case it differs from the certificate in the write-2; as discussed, this can

happen as a result of contention resolution executing a different operation in place

of the client’s, prompting the client to retry the write-2 with the new certificate.

Both scenarios are rare under typical protocol operation, and hence we can optimize

for the more common case when these certificates aren’t required.

write-2-ans responses are modified to contain the client op# instead of the write

certificate, in cases where the certificate in the response would have been the same

as that in the write-2 request. The op# allows the client to identify responses to

previous operations. A certificate is included in the write-2-ans message if it differs

from the original request, owing to contention resolution. It is also included if the

write-2-ans is in response to a write-1 request from the client, in the scenario

where a different client completed the operation on its behalf, and the requesting

client does not yet know this.

If message loss and replica failure are low, all replicas will remain in relative

synchrony, and writebacks to slow replicas will be uncommon. In this typical scenario

we may avoid the inclusion of certificates in write-1-ok and write-1-refused

messages entirely. Similarly, if it is rare for reads and writes to be issued on the same
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object concurrently, then read-ans messages will match and the certificates may be

replaced by a timestamp and viewstamp. If the responses to an optimized request do

not match, then the client retries its original operation in the unoptimized form. This

will ensure that the client obtains the certificates necessary to perform a writeback.

5.4 Piggybacked Grants

Section 4.4.4 describes an additional phase of communication following BFT in the

contention resolution protocol. This phase is used to obtain grants to build a certifi-

cate for executing each operation in L, the ordered list of all contending operations.

This protocol is described for simplicity, with minimal modifications to the BFT mod-

ule. We can avoid this additional phase however, if we modify the module protocol

to produce HQ grants for each operation while running BFT.

Under the standard BFT protocol, an upcall is made to the application code to

execute an operation, once a quorum of valid commit messages is received. In the

BFT module used by HQ, this upcall is made to the HQ server code, to communicate

consistent state on all contending operations. We now modify this upcall such that

it also includes a certificate for each operation.

Prior to sending a commit message while executing BFT, the module performs

a make-grant(startQ, vs) upcall to the HQ server proxy code, passing the startQ

contents of the BFT operation, and the vs viewstamp corresponding to the given

round of BFT. The HQ code determines the grants that would have been sent in

the additional phase of communication from Section 4.4.4, and returns these in its

response. BFT then piggybacks these grants on the commit message sent to each

other replica.

Once the BFT replica receives a quorum of valid commit messages, it passes the

grants, startQ, and the current viewstamp up to the HQ server code for state process-

ing. Under normal circumstances these grants will form a valid certificate to execute

each operation, and the state processing code won’t require an additional phase of

message exchange to gather these certificates. If there are malicious replicas however,
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the grants may not form valid certificates, in which case the message exchange is

still required. For simplicity we do not require BFT to verify the grants in commit

messages, hence the possible need for this post-phase.

While the grants produced by BFT could be collected by a malicious intruder or

bad replica, this does not compromise the safety of the protocol. We cannot rely on

the fact that the operation corresponding to each grant will eventually complete, since

the operations may be aborted if a view change occurs before f + 1 honest replicas

send their commit messages. We can however ensure that no replica is able to gather

a certificate for any operation that is not eventually executed at the same timestamp,

as a result of BFT. If a BFT operation is aborted following a view change, then

there must be at most 2f copies of commit messages and grants, otherwise the BFT

operation would persist throughout the view change. This precludes the existence of

a certificate for any client operation that is assigned a grant. A malicious entity is

also unable to combine the partial set of grants formed in an aborted view with those

from a subsequent view, since these will contain different viewstamps and hence not

form a valid certificate.

5.5 Preferred Quorums

During failure-free executions, only 2f + 1 replicas are required to successfully run

the HQ and BFT protocols. This common case can be exploited through the use of

preferred quorums, introduced in Q/U1 and similar to the use of witnesses in Harp [21].

A preferred quorum is a set of 2f + 1 replicas with which each client communicates,

avoiding the cost of running the protocol at f additional replicas, and ensuring all

client operations intersect at the same set of replicas. The latter feature significantly

reduces the frequency of writebacks, since once an operation has committed it is

known by all replicas in the preferred quorum, avoiding the occurrence of “slow”

replicas. Progress will halt if any replica in the preferred quorum fails, at which point

1Note that while HQ and Q/U both support preferred quorums, HQ is able to reduce the number
of replicas in active communication from 3f + 1 to 2f + 1, while Q/U only from 5f + 1 to 4f + 1
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another replica needs to be added to the preferred quorum.

The replicas in the current preferred quorum are determined statically, to ensure

that all clients communicate with the same preferred quorum. We set the preferred

quorum membership to include the current primary, along with the 2f subsequent

replicas in the ID space.

While only 2f + 1 replicas are required to perform each write operation, clients

send their write-1 request to all replicas, to avoid excessive state transfer during

failures. Only the replicas in the current preferred quorum respond to the write-1

request, and only these replicas participate in phase 2 of the write protocol.

If a client does not get a full quorum of valid responses within a timeout, it

retries the operation using the normal non-preferred quorum protocol. If the client

receives timely responses for a period of time, it can again return to preferred quorum

operation.

Replicas outside the preferred quorum need to periodically learn the current sys-

tem state. This transfer can be performed efficiently, since in the absence of mali-

cious clients the non-preferred replicas already hold a log of outstanding client oper-

ations. Periodically, a non-preferred replica will ask those in the preferred quorum

for a lightweight state transfer, identical to regular state transfer except that op-

erations themselves are not transmitted. Instead each log entry is transmitted as

< cid, oid, op#, hop >, containing an operation hash in place of the operation. The

non-preferred replica does not have knowledge of the most recent timestamp, and

hence leaves this field empty in the state transfer request, requesting state up to that

most recently executed at each replica. If the non-preferred replica does not have an

operation in its write-1 log corresponding to a given timestamp and hop, it requests

standard state transfer for this interval.

5.6 Transactions

The server application data in HQ is typically partitioned into multiple independent

objects, numbered by oid, and corresponding to files or logical groupings of data.
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This partitioning is employed to minimize write contention—the HQ protocol is run

independently for each object, allowing concurrent writes on separate objects. There

are clearly scenarios where a transaction is required to run atomically across a number

of these objects however; this functionality is provided in HQ by extensions for multi-

object transactions.

The correct execution of a transaction requires that it is executed in the same

order across all (a quorum of) replicas, for each object. Furthermore, the transaction

must not be interleaved with any other transactions. For example, if transactions A

and B intersect at two objects o1 and o2, it must not be the case that operation A1

is ordered before B1 on object o1 and operation A2 is ordered after B2 on object o2.

To meet the conditions for correct serialization of transactions, we require clients

to fetch a grant across all relevant objects in a single request. This is performed

using a modified write-1 request of type 〈write-1, cid, oid1, op#1, ..., oidk, op#k,

op〉σc , containing an oid and op# for each of the k objects in the transaction. op

is a multi-part operation, possibly consisting of separate operations op1, ..., opk as

perceived by the server application code. We term the subsequent collection of grants

a multi-grant, of the form 〈cid, h, vs, olist〉σr , where olist contains an entry 〈oid,

op#, ts〉 for each object in the request. A replica will only assign a multi-grant to a

client if it has no outstanding grants for any of the objects in the transaction.

If a replica does have outstanding grants for any of the transaction objects, it will

refuse the write request and return a write-1-refused for each outstanding grant.

The client can then use these to retry the multi-object transaction.

The requirement for only one outstanding request per object at the client re-

mains, in that the client cannot request any operations on any of the objects in the

transaction until it has completed.

To provide support for multi-object transactions, a single instance of BFT is

used to service contention resolution across all objects. This is distinct from the

protocol previously described where a separate BFT module is kept for each object.

The previous description was purely for the purposes of clarity—BFT serializes all

operations at the primary, and hence is able to order across multiple objects provided
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each HQ module has consistent knowledge of the BFT primary.

The protocol for running multi-object transactions is as follows:

1. A client sends a 〈write-1, cid, oid1, op#1, ..., oidk, op#k, op〉σc request to all

replicas.

2. If a replica has no outstanding grants for any of the objects oid1, ..., oidk it

will assign a grant to the client for each, and respond as per a write-1-ok,

with multi-grant 〈cid, h, vs, olist〉σr in place of the regular grant, for olist

consisting of a 〈oid, op#, ts〉 for each object. If the replica has an outstanding

grant for one or more objects, it will send a write-1-refused to the client,

containing the current grants for any outstanding operations on the objects.

In each case the response also includes the most recent certificate for each

requested object, rather than the single certificate in a standard write-1-ok

or write-1-refused message.

3. If the client receives a quorum of matching multi-grants it may proceed with

phase 2, sending a certificate composed of the quorum of multi-grants. Other-

wise it performs a writeBackWrite or requests contention resolution depend-

ing on whether it received refusals or mismatched multi-grants. The write-

BackWrite contains a certificate for each refused object, paired with the

original write-1 request. A resolve request contains a quorum of conflicting

multi-grants.

4. A replica processes a valid write-2 request by making a single upcall to the

application. It must first ensure that it is up to date with respect to every object

in the transaction, achieved via state transfer if necessary. The single upcall

allows the application to run the transaction atomically, in the right place in

the order.

5. In response to a resolve request, a replica freezes for all objects in the request,

and performs contention resolution for them simultaneously. The start mes-

sage contains information for each object identified in the resolve request. As

51



there is only a single instance of BFT per replica, across all objects, the BFT

agreement protocol executes as per a single-object transaction.

6. startQ processing is similar to that for a single-object request. Replicas retain

at most one valid request per client per object. The grants exchanged with

other replicas following the deterministic ordering of requests will comprise of

multi-grants if some of the requests are multi-object transactions. The final

timestamp for each object o is set to o.currentC.ts+|Lo|, where Lo is the subset

of L containing all requests that involve object o. The operations are performed

in the selected order once the replica receives 2f + 1 matching multi-grants for

each operation.

Any client requesting a single-object operation at a replica that has already is-

sued a multi-grant will receive the outstanding multi-grant in the write-1-refused

response. The client will perform a writeback on this multi-grant if it gets a quorum

of matching responses for a different client; otherwise it handles the response as it

would a regular write-1-refused reply.

While functional, the protocol for implementing multi-object transactions entails

significant overhead under high load, owing to the low likelihood that a quorum of

matching multi-grants will be received. Agreement-based replication scheme such

as BFT do not have this problem since they consider the system as a single logical

object.
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Chapter 6

State Transfer

This chapter describes the state transfer mechanisms in HQ. This is used to bring

slow replicas up to date with the current system state.

Since HQ and BFT require only 2f + 1 replicas to participate in each round of

the protocols, some replicas may drift behind the most recently committed state.

Messages are sent to all replicas, and hence under normal circumstances all honest

replicas will have knowledge of the most recently agreed-upon operation. However,

message loss or malicious behavior can lead to some replicas without this knowledge.

We first describe a simplified state transfer protocol where replicas maintain un-

bounded logs of all committed operations. This protocol is then extended to use

snapshots of system state to truncate operation logs. We also describe optimizations

to minimize the state transfer overhead using hashed responses, and discuss modifi-

cations to remove BFT state transfer from the BFT module, replacing it with more

efficient HQ-level state transfer

We discuss state transfer here only in the context of public key cryptography;

modifications to support the use of symmetric key cryptography are given in Sec-

tion 8.4.
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6.1 Simple State Transfer

Replicas keep a log of committed operations to facilitate state transfer. This log is

of the form {< cid, oid, op#, op >, ...}, and contains each committed operation, along

with the identifying information contained in the write certificate for the operation.

Entries are added to this log once a certificate for a subsequent operation is received

(hence the most recent log entry corresponds to backupC), or when operations are

executed as a result of contention resolution. We assume in this section that there is

no bound on the length of this log; Section 6.4 describes modifications to the state

transfer protocol to allow the log to be truncated.

Slow replicas request state transfer using a transfer request, specifying the

timestamp range for the state that is required. This range extends from currentC.ts,

the timestamp for the most recently executed operation, to newC.ts, the timestamp

for the most recently received certificate. State for currentC.ts is required even

though an operation has been executed at that timestamp, since this operation is

only tentative and may not have committed. Replicas respond to a state transfer

request with a state message, containing log entries covering the requested range;

these log entries may extend further than the range if the responding replicas have

progressed beyond newC.ts. We describe this state transfer protocol in more detail

below.

6.1.1 “Client” Protocol

We first describe the state transfer protocol from the perspective of the “client”,

where the client of state transfer is an HQ replica that is behind with respect to the

global system state.

1. State transfer is triggered when a replica receives a valid write certificate newC

with newC.ts > currentC.ts + 1, or if newC.ts = currentC.ts + 1 and the

replica has no operation corresponding to newC.h in ops.

2. The replica forms a request 〈transfer, currentC.ts, newC.ts〉σr and sends
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it to the 2f + 1 replicas that signed newC, requesting state information for

all operations from currentC.ts to at least newC.ts. State for currentC.ts is

requested since it is only tentative at the the slow replica.

3. The replica waits for f+1 matching valid responses. Matching responses contain

identical log segments from currentC.ts to newC.ts− 1; a matching currentC

certificate for newC.ts − 1 may be substituted for the final log entry, if a re-

sponding replica has not yet received a certificate for newC.ts. Valid responses

must also contain valid certificates, have backupC in the response match the

highest log entry, and have an entry in ops corresponding to currentC.h in the

response.

4. Matching log entries are replayed in order, with the replica executing each

operation, and updating its protocol state accordingly. These matching entries

may extend beyond newC.ts, if system state has advanced since newC.ts was

received.

The replica may have to undo the operation at currentC, before executing the

log, if the log entries for currentC.ts don’t match the most recently executed

tentative operation.

The matching log entries may also extend only to newC.ts− 1, if the operation

at newC.ts is not yet committed; in this case the replica waits for a response

that contains the operation for newC.h in ops, and executes this operation.

5. currentC and backupC are replaced by the certificates corresponding to the

two most recently executed operations. backupC will be included in the re-

sponse from the replica r with the shortest log sequence, either as r.backupC,

or r.currentC if the replica had not yet seen the certificate for newC.ts.

currentC is replaced with either r.currentC, or newC if this operation was

executed based on a response in ops.

6. If a response r2 exists such that r2.currentC.ts > currentC.ts, for the new

currentC at the replica, then the replica is not yet up to date with the most
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recent system state. It requests state transfer again between currentC.ts and

r2.currentC.ts.

A complicating factor in the processing of replica state during state transfer is

that no certificates are included in the log entries; certificates are avoided for efficiency

reasons, both in bandwidth and log storage. A result of this is that replicas are unable

to update the write certificate field in oldOps for any clients with operations in the

log. We note that this is in fact unnecessary, since the certificates in oldOps are used

only to respond to duplicate write-2 requests, and the certificate in such a response

is unnecessary since the operation must have already committed.

When updating oldOps while replaying the log, the certificate for any modified

entry is set to null. If responding to a duplicate client request, the replica sends its

write-2-ans response with this null certificate. f + 1 matching responses with null

certificates is sufficient proof to a client that the operation committed with the given

result. Any replica with currentC.ts greater than the timestamp for the operation is

able to send a null certificate, confirming that the operation is no longer tentative.

6.1.2 Replica Protocol

The protocol for responding to a state transfer request at a replica is straightforward,

and operates as follows:

1. A replica drops any 〈transfer, lowerTS, upperTS〉σr message if upperTS >

currentC.ts+1, i.e., if the replica does not have sufficient information to respond

to the request. It also ignores requests that are incorrectly signed.

2. The replica responds with a 〈state, < cid, oid, op#, op >lowerTS, ..., < cid, oid,

op#, op >backupC.ts, backupC, currentC, ops〉 message, i.e., it sends its entire

log history from lowerTS onwards, the current and backup commit certificates,

and all operations in ops.
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6.2 Hashed Responses

In the protocol thus described, each replica that receives a state transfer request must

send a complete copy of all requested log entries. This can be expensive when the

slow replica is significantly behind the latest system state, or when operations are

large.

Instead we adopt a more bandwidth-efficient approach, where only one replica

sends a complete response, while the others send hashes. We modify the trans-

fer request to contain an additional dr field, indicating the rid of the designated

replica. The designated replica is responsible for returning a full response to the

request, while the other replicas replace the log segment up to newC.ts − 1 with a

single hash over all entries (including an entry for newC.ts − 1 based on currentC,

if currentC.ts = newC.ts − 1). This hash excludes the operation corresponding to

newC.ts since it may not yet have been committed, as well as any possible operations

with higher timestamps, since replicas may have log segments of different length when

receiving the transfer request. The log entries from newC.ts onward are sent by

all replicas, along with the certificates backupC and currentC, as well as the the

operation corresponding to currentC.

If f hashes match the log segment from the designated replica, then the optimiza-

tion was successful and the replica can continue processing of the responses. Other-

wise it retries the state transfer request in the unoptimized form, and will choose a

different designated replica the next time state transfer is required.

6.3 Checkpoints in BFT

We discuss the truncation of operation logs in Section 6.4; we first describe the use

of checkpoints in BFT, however, to provide a context for the modifications to state

transfer.

The traditional BFT protocol performs state transfer through the exchange of

prepare certificate logs. These logs cannot be allowed to grow indefinitely, however,
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and must eventually be truncated. The pruning of these logs is performed by the

BFT checkpoint protocol, one of the more complex and expensive aspects of BFT.

During a checkpoint, replicas compute a digest over the entire application state, store

a logical copy of this state, and then exchange signed copies of these digests with

other replicas. Once a replica holds f + 1 signatures for the same digest, it has proof

that the state is correct and known at at least one legitimate replica, and can hence

prune any prior log entries.

While the computation of digests is expensive, checkpoints are a necessary aspect

of the standard BFT protocol and must occur frequently, particularly to support view

changes. On a view change the new primary must establish the most recent stable

system state, and run the BFT protocol for operations that may have committed

since then. The new primary is unable to compute a stable system state based on

prepare logs alone, since operations may commit out of order, and bad replicas may

send conflicting prepare messages for old operations in previous views. A checkpoint

certifies that the state is indeed stable at at least one valid replica. The digest is

required so that state transfer is possible from a single valid replica, without requiring

f other corroborating copies of the state.

It would be highly undesirable to run the full checkpoint protocol at both the BFT

and HQ layers in the HQ protocol. Fortunately this is unnecessary, since BFT is used

by HQ in a far more restricted context than the original protocol. Moreover, BFT

can rely on HQ to perform state transfer for operations ordered in any committed

contention resolution operation.

6.3.1 Removing Checkpoints from BFT

The BFT module described thus far has closely followed the original BFT specifica-

tion [7]. We have discussed the use of BFT in a relatively unmodified fashion for

the purposes of clarity, yet the expense involved in the original BFT state transfer

protocol warrants modifications when deployed in HQ.

We are able run the BFT module with a significantly stripped-down state manage-

ment protocol, owing to fundamental differences between our BFT module and the
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stand-alone BFT protocol. The BFT module as used in HQ differs from the standard

BFT protocol in two key ways:

1. The BFT module has no application state. BFT is used by HQ purely to

order contention resolution operations, with application state maintained by

HQ itself. We can leverage HQ state transfer to bring slow replicas up to date,

and are able to avoid the inclusion of digests in checkpoints.

2. Unlike standard BFT, the HQ BFT module has no request pipeline—replicas

freeze when requesting contention resolution, and will not issue a subsequent

request until the previous one has been resolved. We can derive from this a

guarantee that when BFT runs an operation, the state from any previous BFT

operation will be known at at least f +1 valid replicas. With knowledge of prior

state at f + 1 non-faulty replicas we are able to remove BFT checkpoints and

logs entirely.

6.3.2 Reliance on HQ for State Management

We formalize the previous point 2 in the following invariant:

Lemma 6.3.1 If a round of BFT is commenced for contention at timestamp t, the

application state corresponding to the operation at timestamp t− 1 must be known at

a minimum of f + 1 non-faulty replicas.

An informal proof of the above invariant is as follows:

Proof BFT is used by HQ solely for resolving instances of write contention. Insti-

gation of contention resolution requires a conflict certificate containing 2f + 1 grants

with matching timestamps; f + 1 of these must have come from honest replicas that

have executed the operation corresponding to the previous timestamp. There are

three possible scenarios by which the previous timestamp was agreed upon:

1. The previous timestamp was established via the standard HQ protocol. The

quorum property of HQ guarantees that at least f + 1 honest replicas know

about the operation.
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2. The previous timestamp was established using contention resolution, which ran

until completion. Here BFT guarantees that f + 1 honest replicas know about

the operation.

3. The previous timestamp was established using contention resolution, but the

contention resolution process did not complete at all replicas. It is still possible

for 2f + 1 non-frozen replicas to see a certificate for this timestamp—if at least

one honest replica commits the operation in BFT, and up to f faulty replicas

also commit, the combined f + 1 replicas can transfer their state to f slow

replicas, resulting in 2f +1 non-frozen replicas with matching timestamps. The

state transfered to the slow replicas must be valid however, since one honest

replica participated. Hence we are again guaranteed at least f + 1 non-faulty

replicas with knowledge of the operation.

6.3.3 Simplified BFT Protocol

Since f + 1 valid copies of system state exist for any previous BFT operation, a

replica may participate in a round of BFT for any new timestamp in the current or a

subsequent view. It will accept a valid pre-prepare message and send a prepare

regardless of whether it has committed previous operations. Unlike traditional BFT

where a BFT replica must execute each operation in order, the BFT module is able

to rely on HQ state transfer to fill in any gaps in the execution. The existence of a

quorum of signed start messages in the startQ of a BFT request implies that the

state for any previous operation can be retrieved on the HQ level.

The standard BFT protocol also maintains a high water mark H, used to limit

the possible sequence numbers the primary can assign to a BFT operation. The

high water mark is included to prevent a bad primary from exhausting the sequence

number space. H is not required in the BFT module used by HQ, since the primary

is constrained to assign a sequence number one higher than that in the viewstamp for

the certificates in startQ. To provide greater separation between the BFT and HQ

modules, and avoid performing an upcall to HQ to validate the startQ and sequence
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number in the pre-prepare phase, we instead provide proof of sequence number

validity on the BFT level. This proof is composed of 2f +1 signed commit messages

from the previous BFT operation. Replicas will only accept a pre-prepare message

for a sequence number s if it contains 2f + 1 signed commits for sequence number

s − 1. The primary may retrieve copy of these commit messages from any valid

replica that committed the operation, if it did not receive 2f commit messages while

running BFT.

Checkpoints aren’t required in the BFT module, and we replace the log with

a copy of the operation from the most recent round of BFT, along with the most

recent prepare certificate. Replicas send this prepare certificate to the new primary

on a view change; the primary will send a pre-prepare for the most recent of these

prepare certificates. The new primary sends no other pre-prepares in its new-view

message, since there is no request pipeline.

A replica may receive a prepare or commit certificate yet not have seen the original

operation. It asks each replica included in the certificate for a copy of the operation;

it will receive the operation if the certificate is current, or a refusal otherwise. If the

replica receives f + 1 refusals, it aborts the BFT round and becomes unfrozen - a

refusal from an honest replica implies that it holds a more recent BFT operation,

further implying that the old operation is known by at least f + 1 honest replicas.

6.4 State Snapshots

We now modify the HQ state transfer protocol to allow replicas to truncate their

operation logs. This is a necessary modification to support the execution of long-

lived systems.

We restrict the operation log to a maximum length maxlog, established statically

at all replicas. The log is stored in a circular structure, and once it reaches this

maximum size, the oldest log entry is overwritten with each new addition. State

transfer requests are usually served out of this log; however a particularly slow replica

may require information from old log entries that have been overwritten. To facilitate
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state transfer in this scenario, replicas send application level state corresponding to

a fixed snapshot of the service, along with any log entries since this snapshot. We

adopt the terminology snapshot instead of checkpoint, since HQ snapshots occur far

less frequently than BFT checkpoints, and do not require inter-replica exchange of

signed digests. Snapshots also include a copy of oldOps, to capture protocol state

along with the application state. Figure 6-1 illustrates the circular log used for state

transfer, along with the snapshot state.

Snapshot

1000

1401

<op,...>

999

<op,...>

998

<op,...>

1001

<op,...>

402

<op,...>
... ...

backupC

1000

<op,...>

Figure 6-1: Circular log structure used to store state history. In this diagram maxlog =
1000, backupC.ts = 1401, the last snapshot was performed at timestamp 1000, and
log entries are stored from timestamps 402–1401. When the next operation commits,
the entry for timestamp 402 will be replaced with timestamp 1402.

After every maxlog committed operations, a replica stores a copy of the current

committed application state and oldOps as a snapshot, and discards the previous

snapshot. By matching the checkpoint interval to the length of the log, we ensure that

no log entries are discarded for operations that aren’t reflected in a snapshot, while

performing application snapshots as infrequently as possible. Note that snapshots do

not capture the tentative state reflected by executing the operation in currentC, but

rather only that reflected by backupC, since the former may be rolled back during

contention resolution. All valid replicas perform snapshots at the same timestamp,

and thus at least f + 1 honest replicas will have matching snapshots at timestamps

after the snapshot transition.

It may be possible for fewer than f + 1 matching snapshots to exist during a

snapshot transition, where some of the replicas have performed their new snapshot

and some have yet to do so. This does not pose a liveness problem since the replicas yet
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to perform the snapshot are able to do so without requiring state transfer themselves,

once they receive the certificate for the most recent operation. Any slow replica

requiring state transfer during this transition may safely retry, adopting the policy

described in the following section.

6.4.1 Optimistic State Transfer

The signed checkpoint digests in traditional BFT allow state transfer from a single

replica. We avoid these signed digests in HQ, but instead rely on an optimistic

protocol for state transfer, requiring matching snapshots and log entries from f +

1 replicas. We guarantee that state transfer will succeed if the system is stalled,

as required for liveness, and also that it will complete successfully under realistic

network delays, but do not guarantee that state transfer will succeed otherwise. This

optimism does not compromise system correctness or liveness, but is discussed here

for completeness.

The snapshot interval is large with respect to the distribution of round-trip times

on the Internet. Hence with very high probability all honest and up-to-date replicas

will receive a state transfer request within the same snapshot period. The recipient

replicas will respond to the slow replica, and deliver at least f + 1 matching state

transfer responses. This will also be the case when the system has stalled and is

waiting for the slow replica to catch up, since no operations will be processed in

the meantime. If the system is not stalled and network delays vary wildly, however,

the honest replicas may receive state transfer requests in different snapshot intervals,

resulting in fewer than f + 1 matching responses.

Our approach is simply to have a slow replica retry a state transfer request when

if hasn’t received f + 1 matching responses after a timeout. The retry is sent to all

replicas, in case all replicas have moved to a newer snapshot in the intervening period.

The timeout is set experimentally, originally to twice the maximum observed request

response time, and doubled on each subsequent failed transfer request as per the view

change timer described in Section 4.7.
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6.4.2 Replica Protocol

The protocol for handling a state transfer request using snapshots is as follows:

1. A replica ignores any 〈transfer, lowerTS, upperTS, dr〉σr message if upperTS >

currentC.ts+1, i.e., if the replica does not have sufficient information to respond

to the request. It also ignores requests that are incorrectly signed.

2. If an entry for lowerTS is still contained in the commit log, the request can

be served without the use of snapshots. The replica responds as described in

Section 6.1, including the optimizations in Section 6.2.

3. If no entry for lowerTS exists in the log, then some of the required state has

been truncated. The designated replica sends the snapshot state1, and any

subsequent log entries up to upperTS in a 〈state, snapshot, < cid, oid, op#,

op >snapshotTS+1, ..., < cid, oid, op#, op >backupC.ts, backupC, currentC, ops〉σr

message. Non-designated replicas reply with 〈state, hsnapshot, hrange, backupC,

currentC, ops〉σr , including a hash over the log range as described in Section 6.1.

6.4.3 “Client” Protocol

Again we describe the protocol for the slow replica in state transfer.

1. As before, state transfer is triggered when a replica receives a valid write certifi-

cate newC with newC.ts > currentC.ts + 1, or if newC.ts = currentC.ts + 1

and the replica has no operation corresponding to newC.h in ops.

2. The replica forms a request 〈transfer, currentC.ts, newC.ts, dr〉σr and sends

it to the 2f + 1 replicas that signed newC, requesting state information for all

operations from currentC.ts to at least newC.ts. The designated replica is

specified in dr.

1It is not necessary to send the complete system snapshot, but rather only the pages that have
been modified since the last operation known at the slow replica. This optimization is made possible
through the comparison of hierarchical state digests, similar to Merkle trees, as described in [6]
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3. The replica waits for f +1 matching valid responses. Matching responses consist

of a valid response from the designated replica, along with f other responses

with hashes matching the snapshot in the designated response (if the response

contains a snapshot), and with hashes matching the designated replica’s log

segment up to newC.ts − 1. As in Section 6.1, the currentC response from a

replica may be substituted for its log entry at newC.ts − 1, if the replica has

not yet seen a certificate for newC.ts. The backupC and currentC responses

from each replica must be valid, and an operation for currentC.h must exist in

the ops response.

Any log entries above newC.ts−1 must match up until the shortest log segment;

this ensures that there is a backupC and currentC corresponding to the end

of the matching log segment. If the replica does not receive enough matching

responses within a timeout, it retries the transfer request with a different

designated replica.

4. If the responses contain a snapshot, this is used to replace the application state

at the replica, and becomes the new replica snapshot. oldOps is also replaced

with the copy stored in the snapshot. Matching log entries are then replayed in

order, and state updated as described in Step 4 of the simplified client protocol.

5. backupC and currentC are updated according to Step 5 of the simplified client

protocol, along with execution of the operation corresponding to currentC.

6. As in Step 6 of the simplified protocol, if currentC does not represent the most

recent certificate included in the responses, state transfer is requested again for

the highest timestamp received.
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Chapter 7

Correctness

This chapter presents high-level safety and liveness arguments for the HQ protocol.

We expand on these properties in Section 8.3, when discussing the use of symmetric

key cryptography.

7.1 Safety

We examine safety specifically in the context of linearizability [12] of system up-

dates; we show that the system behaves like a centralized implementation, executing

operations atomically one at a time.

To prove linearizability we need to show that there exists a sequential history that

looks the same to correct processes as the system history. The sequential history must

preserve certain ordering constraints: if an operation precedes another operation in

the system history, then the precedence must also hold in the sequential history.

We construct this sequential history by ordering all writes by the timestamp as-

signed to them, putting each read after the write whose value it returns.

To construct this history, we must ensure that different writes are assigned unique

timestamps. The HQ protocol achieves this through its two-phase process — writes

must first retrieve a quorum of grants for the same timestamp to proceed to phase 2,

with any two quorums intersecting at at least one non-faulty replica. In the absence of

contention, non-faulty replicas do not grant the same timestamp to different updates,
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nor do they grant multiple timestamps to the same update.

To see preservation of the required ordering constraints, consider the quorum

accessed in a read or write-1 operation. This quorum intersects with the most

recently completed write operation at at least one non-faulty replica. At least one

member of the quorum must have currentC reflecting this previous write, and hence

no complete quorum of responses can be formed for a state previous to this operation.

Since a read writes back any pending write to a quorum of processes, any subsequent

read will return this or a later timestamp.

We must also ensure that our ordering constraints are preserved in the presence

of contention, during and following BFT invocations. This is provided by two guar-

antees:

• Any operation that has received 2f +1 matching write-2-ans responses prior

to the onset of contention resolution is guaranteed to retain its timestamp t.

This follows because at least one non-faulty replica that contributes to startQ

will have a currentC such that currentC.ts ≥ t. Furthermore, contention

resolution leaves unchanged the order of all operations with timestamps less

than or equal to the latest certificate in startQ.

• No operation assigned a subsequent ordering in the same round of contention

resolution can have a quorum of 2f + 1 existing write-2-ans responses. This

follows from the above, since any such operation will be represented by a

currentC in startQ, and retain its original committed timestamp.

A client may receive up to 2f matching write-2-ans responses for a given certifi-

cate, yet have its operation reordered and committed at a later timestamp. Here it will

be unable to complete a quorum of responses to this original timestamp, but rather

will see its operation as committed later in the ordering after it redoes its write-2

phase using the later certificate and receives a quorum of write-2-ans responses.

The argument for safety (and also the argument for liveness given below) does

not depend on the behavior of clients. This implies that the HQ protocol tolerates

Byzantine-faulty clients, in the sense that they cannot interfere with the correctness
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of the protocol.

7.2 Liveness

This section presents the argument that our approach is live. Liveness is presented

from the perspective of the replicated service; while we guarantee that the system

is live, we do not guarantee liveness for individual clients—this is discussed in Sec-

tion 7.3.

We assume that if a client keeps retransmitting a message to a correct server, the

reply to that message will eventually be received; we also assume the conditions for

liveness of the BFT algorithm are met [7].

The argument for liveness is as follows:

• When there is no contention, client write requests execute in two phases (read

requests require only a single phase). Each request for a given phase from a

correct client is well-formed, and, by construction of the HQ protocol, is replied

to immediately by correct replicas (unless the replica is frozen, which we discuss

below). Thus, the client eventually assembles a quorum of replies, which allows

it to move to the next phase or conclude the operation.

• If some replicas are behind the latest system state, and return grants for mis-

matching timestamps, they will be brought up to date by a single writeback

phase. This single writeback phase is sufficient to bring all replicas to the latest

state for the current timestamp, and hence does not impact liveness.

• If a client fails before completing the second phase of a write operation, this

write will be executed on its behalf in a single phase by the next client to

attempt a write, via a writeback operation.

• When a client needs to resolve contention to make progress, the contention

resolution process will eventually conclude, since it consists of executing a BFT

operation, and, given the liveness properties of BFT, eventually the operation

is executed at good replicas.
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• If a client request did not get a reply because the replica was frozen, then the

replica was executing a BFT operation to resolve contention. Using the previous

argument, eventually the operation is executed at good replicas, leading to the

replica unfreezing, and all pending requests being answered.

7.3 Starvation

While the HQ Replication protocol provides liveness for the system as a whole, it

does not offer any guarantees on fairness for individual clients. It is possible under

pathological circumstances for a given writer to be infinitely bypassed by competing

clients. This is a characteristic of quorum-based approaches, and a weakness in com-

parison to primary-driven agreement protocols such as BFT. In practice we ensure

that competing clients are able to execute operations whenever contention is detected

and resolved using the BFT module.
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Chapter 8

Symmetric Key Protocol

This section modifies the HQ Replication protocol to replace public-key signatures

with authenticators [7]. An authenticator is a vector of Message Authentication Codes

(MACs), each using a secret key to authenticate the message for a given replica. We

essentially emulate a single one-to-all signature with a set of one-to-one MACs, one

for each replica in the system. Authenticators are advantageous since they require

much lower CPU overhead than public key signatures; while improvements have been

made in the performance of public key signature algorithms, signatures are still more

than two orders of magnitude slower to compute than a MAC.

A key disadvantage of authenticators however is that they don’t provide the same

security properties as signatures. A signature accepted as valid by any good client or

replica will be accepted as valid by any other good client or replica; authenticators

do not have this property. A given authenticator may contain valid MACs for some

replicas in the system, while others are invalid. Moreover, a client cannot ascertain

the validity of an authenticator, since it only contains MACs for replicas.

Authenticators and MACs are sufficient in the standard HQ protocol in the ab-

sence of failures and contention. If these conditions do not hold however, we are

unable to provide any service guarantees. An example where the standard HQ pro-

tocol cannot function with authenticators is in contention resolution. Here replicas

must determine the latest system certificate based on the messages in startQ. We

require this to be a deterministic computation, yet with authenticators cannot ensure
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that good replicas will agree on the validity of each certificate.

We modify the HQ protocol to accommodate the relaxed guarantees of authenti-

cators, as presented below.

8.1 Non-Contention Authenticator Protocol

Authenticators are sufficient in the unmodified protocol for read, read-ans, write-

1, write-1-ok and write-1-refused messages. We simply replace the signature

in each grant with an authenticator, and likewise with certificates. Clients replace

their signature in each write-1 message with a MAC for the recipient replica, and

read requests remain unchanged. read-ans, write-1-ok and write-1-refused

messages now contain grants and certificates authenticated for each replica in the

system, but not the clients themselves, and hence the client is unable to verify the

integrity of these elements. Hence we remove the client grant and certificate integrity

checks altogether, but must now modify write-2 and writeback processing to account

for situations where the client inadvertently provides a bad certificate.

The previous response to a bad certificate in a write-2, writeBackRead or

writeBackWrite message was to drop the message, since it was an indicator of a

faulty client. With this no longer the case, the replica must notify the client of the

problem. The replica signs the bad certificate with its own signature, and responds

with a write-2-refused message, containing the signed certificate. The client may

then request contention resolution using this bad certificate as the conflict certificate

conflictC in a resolve message. It will be handled as per regular contention by

the replicas, which will successfully execute the operation and any other concurrent

operations.

We note that this behavior allows a malicious client or replica to continuously

instigate contention resolution. This contention resolution, in the absence of write

contention, will result in the execution of at least one operation, and hence liveness

is not compromised; however it can force a slower path through the protocol.
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8.2 Contention Resolution with Authenticators

The main challenge in performing contention resolution with authenticators is deter-

mining the latest valid certificate in startQ. System correctness requires this decision

to be deterministic, yet a seemingly valid certificate at one replica may appear in-

valid at another. There may also be multiple conflicting certificates for the same

latest timestamp but different requests; replicas must correctly determine which one

is valid. Such determinations are easy when using signatures, since a valid signature

is seen as valid by all replicas, but not so with authenticators. These problems are

solved with additional processing before running BFT, including a voting phase where

replicas determine the validity of certificates.

Note that communication within the contention resolution protocol itself still uses

signatures. This is less of a computational expense since we expect write contention

to occur less frequently than regular operations.

The contention resolution protocol begins when one or more replicas receives a

valid resolve request. As discussed in Section 4.4.2, a replica will first perform state

transfer if it receives a resolve request with clientConflictC.ts > currentC.ts + 1

or clientConflictC.vs > currentC.vs. Each replica then updates conflictC, adds w1

to ops, and sends a 〈start, conflictC, ops, currentC, grantTS, vs〉σr message to the

primary. They will broadcast the resolve request to all replicas if they don’t receive a

corresponding response within a timeout, as described in Section 4.4.2. Here vs is the

current viewstamp at the replica, recorded as another component of the replica state;

we need this additional argument when using authenticators because it is possible

that the viewstamp in currentC is smaller than the most recent viewstamp known

at the replica. The viewstamp was not necessary when using signatures, since at

least one request will always be executed at a new viewstamp as part of conflict

resolution—this may not be the case when using authenticators.

The primary collects these start messages and checks them for validity. In par-

ticular, it discards any message containing a currentC or grantTS whose request is

not present in ops; the presence of an operation in ops is later used to check for a
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requests validity. The primary then processes these messages before running BFT, as

discussed below.

8.2.1 Step 1

The first problem we need to solve is that it is possible for start messages from

different replicas to propose current certificates for the same timestamp but different

requests. We say that such proposals conflict. Conflicts can happen in two ways:

The first is when some replica is behind with respect to the running of BFT.

In this case the viewstamp in its start.currentC will be out of date; the primary

discards such a start message, since the instance of contention it refers to must

already have been resolved. The primary tells the replica to unfreeze via a 〈start-

refused, currentC 〉 message; this will contain at least f + 1 valid authenticators for

the replica, providing sufficient proof to unfreeze and instigate state transfer to move

to the new viewstamp. The replica will send a start message to the primary for the

current round of contention when it receives a resolve for the new viewstamp.

The second case occurs when one of the replicas is lying, and pretends that a

certificate it holds is valid. This case cannot be handled by the standard protocol,

and requires some modifications.

As in our base protocol, the primary collects all start messages into startQ, but

it also collects non-conflicting messages into a subset startQsub. Each newly received

message is checked to see if it conflicts with some message already in startQsub. If

there is no conflict, it adds the new message to startQsub. Otherwise the new message

is left out, and the existing conflicting message is also removed; if the new message

conflicts with several messages already in startQsub, one of them is selected for removal

deterministically, e.g., based on replica id. This process is guaranteed to remove at

least one start message from a faulty replica.

Step 1 terminates when |startQsub|+k = 2f +1, where k = |startQ−startQsub|/2

is the number of conflicting pairs. It is safe to wait until this point since each pair con-

tains at least one faulty replica, and hence a maximum of 2f +1 responses from honest

replicas are required. After termination, startQsub contains at least f +1 entries from
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honest replicas, and there are no conflicting proposals for current certificates among

the entries in startQsub.

8.2.2 Step 2

The primary now has a collection of at least 2f +1 start messages in startQ. If the

latest certificate in startQ is the certificate formed by each grantTS in the set, or is

proposed by at least f + 1 replicas, the primary can simply run BFT as discussed in

Chapter 4. Otherwise it isn’t clear which certificate to identify as the most recent,

because it’s possible that the certificate with the highest timestamp was proposed by

a liar. To solve this problem, the replicas carry out the following protocol.

1. The primary p sends a 〈check, startQ〉σp message to all the replicas. This mes-

sage contains the start messages in the order the primary processed them and

thus each replica will be able to compute startQsub using the same computation

as the primary.

2. Each replica computes startQsub. It then selects all the certificates C in startQsub

that have timestamps in the range [currentC.ts−1, currentC.ts+1], if any ex-

ist. This range encompasses the cases where currentC is behind the latest

system state, current, or ahead with an inconsistent state, with the following

additional constraints:

• If C.ts = backupC.ts, then C.h = backupC.h, i.e., both certificates identify

the same request.

• Similarly, if C.ts = currentC.ts then C.h = currentC.h.

• If C.ts = currentC.ts + 1, then either C’s authenticator appears valid to

the replica, or the replica has seen the request represented by C in the

latest round of write-1 requests. This latest set of write requests is given

by ops−{curr}, where curr is the write request that was last executed to

bring the replica to the current state. It is important to ignore curr, since

we are only interested in the new write-1 requests in ops.
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At this point the replica has selected between zero and three candidate certifi-

cates.

3. Each replica creates votes for all its candidates. A vote is a pair 〈ts, h〉 where

h is the hash of the request at timestamp ts − 1. The hash ensures that two

votes for a certificate, as represented by the timestamp, are compatible only if

the replicas that voted were at the same previous state; in essence preventing a

fork of the system state [30]. Note that the inclusion of the hash requires each

replica to retain an additional old certificate for the request at currentC.ts− 2

so that it can vote for a candidate at currentC.ts − 1. If the replica has any

votes to send, it sends an 〈ok,V, hc〉σr message to all replicas, where V is the

collection of votes and hc is a hash of the check message.

4. If the candidates include a certificate for currentC.ts + 1 which is valid for the

replica, it is removed from the set of candidates. This certificate was included

in the candidate set during the voting step, but now removed. It is important to

vote for an invalid certificate if the replica contributed a grant for the operation,

since there may be another replica that has seen a valid certificate for the

operation, and is awaiting votes. Replicas do not collect votes for an invalid

certificate however, since this may result in a quorum of votes with no valid

certificate.

5. If a replica has a nonempty set of candidates, it waits for f + 1 ok match-

ing messages with votes for the timestamp of its latest candidate certificate,

or a later one. Two ok messages match at a timestamp t if each contains an

identical vote for that timestamp. When the replica has the votes, it sends an

〈accept,O, t, hc〉σr to the primary, where O contains the collection of support-

ing ok messages for timestamp t. If the set of candidates is empty, the replica

doesn’t wait for votes; instead it immediately sends an accept message, but in

this case O is empty. Note that it is always safe for a replica to wait for f + 1

matching votes, since each candidate certificate remaining in the set appears

valid to the replica, and contains grants from at least f + 1 honest replicas.
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6. The primary waits for a quorum of valid accept messages, all containing an hc

that matches the hash of the check message it sent earlier. It then calls BFT

to run a checkedResolve operation, similar to a resolve, with startQ and

the collection of accept messages as arguments. Again, the entries in startQ

are in the order the primary originally processed them.

8.2.3 Step 3

Replicas process the upcall from BFT as described in Chapter 4, except that in the

case of a checkedResolve operation they use the accept messages to determine

the latest certificate C. C is determined as the certificate in startQsub that contains

the largest timestamp mentioned in one of the accept messages, assuming it contains

a valid nonempty O.

If the replica is out of date with respect to C, it must first perform state transfer

to obtain any missing requests. If the replica were processing a resolve upcall,

it would fetch state up to C.ts − 1 as discussed in Section 4. If it is processing

a checkedResolve upcall however, it uses the accept messages, included as an

argument, to decide what to do. In this case, the accept message for C identifies the

operation that should run at C.ts− 1. If this operation is in startQ.ops, the replica

requests state transfer for requests up to C.ts− 2; otherwise it requests state transfer

for requests up to C.ts− 1.

After bringing itself up to date, the replica forms the set L of additional operations

to be executed, but it adds an operation to L only if the operation appears at least

f + 1 times in startQ.ops. This ensures the operation was correctly received by at

least one honest replica, and not fabricated by a malicious replica.

8.3 Correctness

In this section we discuss the safety and liveness of the symmetric key contention

resolution protocol. As in Chapter 7 we assume that if a replica sends a message

repeatedly, it will eventually be delivered; we also assume there are at most f faulty
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replicas.

We begin by stating four lemmas regarding Step 1 of the protocol.

Lemma 8.3.1 startQsub contains no conflicting proposals.

Proof Obvious, by construction.

Lemma 8.3.2 The set startQrejects = startQ−startQsub contains at least k requests

from faulty replicas.

Proof start messages are “added” to startQrejects in pairs, and this happens only

when the two messages conflict. Honest replicas will never produce conflicting cer-

tificates, and therefore at least one of the two replicas that sent the conflicting pair

is a liar.

Lemma 8.3.3 The set startQrejects contains at most k (defined in Section 8.2.1)

messages from honest replicas.

Proof Follows directly from Lemma 8.3.2.

Lemma 8.3.4 When Step 1 terminates, startQsub contains at least f + 1 messages

from honest replicas.

Proof When Step 1 terminates, |startQsub| = 2f + 1− k = (f + 1) + (f − k). From

Lemma 8.3.2 we know that the primary has processed at least k messages from faulty

replicas. If k = f , i.e., all messages from liars are in startQrejects, then all messages

in startQsub are from honest replicas and there are exactly f +1 of them. Otherwise,

startQsub might contain up to f − k messages from liars, but it still contains an

additional f + 1 messages from honest nodes. Therefore startQsub contains at least

f + 1 messages from non-faulty replicas.
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8.3.1 Safety

Our correctness condition has three parts:

• Commitment. The latest certificate, C, selected by the protocol must satisfy

C.ts ≥ t, where t is the timestamp of the most recently committed request.

This way we ensure that all committed requests retain their place in the order.

• Validity. All requests executed at timestamps greater than t must be valid

requests, i.e., ones requested by a client.

• Consistency. Each operation in startQ that is assigned a timestamp greater

than t, is assigned the same timestamp at all replicas.

We address these components separately.

Commitment.

The commitment condition is satisfied because the certificate corresponding to the

most recently committed request will be present in startQsub. The selection process

in Step 2 will select a timestamp for the next operation based upon this most recently

committed request.

In Step 1, as many as half of the messages in startQrejects might be from honest

replicas. A concern may be that as a result we might not have a message in startQsub

from an honest replica that knows about the most recently committed request. How-

ever, by Lemma 8.3.4 we know that when Step 1 terminates, startQsub contains at

least f + 1 messages from honest replicas (2f + 1− k messages, for k faulty replicas).

It therefore has a non-empty intersection with the set of at least f +1 honest replicas

that processed the most recently committed request. Since any replica in the inter-

section is honest, it will propose a certificate at least as recent as the most recently

committed request.

The honest replicas that have knowledge of the most recently committed request

will succeed in collecting votes for this or a newer request in Step 2. The primary will

receive an accept message from at least one of these replicas, since it must wait for
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2f + 1 accepts, and hence include a response from at least one of the f + 1 replicas

with knowledge of the committed certificate.

Validity.

Validity was straightforward when signatures were used in place of authenticators,

since the signatures in client requests determined the validity of a client request.

When using authenticators however, the voting protocol is used to ensure request

validity.

The request in the latest certificate C is guaranteed to be valid, since C was either

proposed by at least f + 1 replicas in their start messages, or it was built from

the grants in the start messages, or it was selected based on an accept message

containing f + 1 valid votes. In all three cases at least one honest replica must have

vouched for C, which is sufficient to guarantee that the request in C is valid.

All requests that are assigned timestamps greater than C.ts must be valid since

they must appear at least f +1 times in ops. Hence we only need to examine validity

for requests assigned timestamps less than C.ts. Validity is also clear for requests

with timestamps less than or equal to t, since these have already committed. So we

are concerned only with requests that are assigned timestamps greater than t but less

than C.ts.

If C was selected without voting on accept messages, then either C.ts = t or

C.ts = t + 1; in this case there are no requests with timestamps greater than t but

less than C.ts.

If C is selected by considering accept messages however, it is possible that C.ts >

t + 1. In this case C must be invalid and has been proposed by a faulty replica. Here

a faulty replica has succeeded in getting at least one non-faulty replica to vote for C.

This implies two things:

1. The request in C must be valid, since no non-faulty replica will vote for it

otherwise

2. C.ts ≤ t + 2, since currentC at a non-faulty replica cannot be more than
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one timestamp ahead of the most recently committed request, and a non-faulty

replica will not vote for a certificate with timestamp greater than currentC.ts+

1.

When C.ts = t+2, the request chosen to execute at timestamp t+1 is the request

with its hash included in the votes for C. Since at least one of these votes comes from

an honest replica, we are guaranteed that the request is valid.

8.3.2 Consistency

The ordering of each operation following C.ts is defined by the set L, formed in Step

3 of contention resolution. This set is computed deterministically by each replica,

with existence of an operation in L predicated on at least f +1 copies of an operation

in startQ.ops. Given that each replica has currentC.ts = C.ts, and the ordering

of operations in L is deterministic, each operation in L will be assigned the same

timestamp across all replicas.

8.3.3 Liveness

There are two area where one may have concerns about the liveness of the contention

resolution protocol—the termination of Steps 1 and 2.

Step 1

The termination of Step 1 is guaranteed since whenever the primary waits for another

start message there is always at least one more non-faulty replica to send that

message. The termination condition for Step 1 is |startQsub| + k = 2f + 1. By

Lemma 8.3.3 we know that the maximum number of honest nodes with entries in

startQrejects is no greater that k. Therefore the number of honest replicas heard from

so far is no more than |startQsub|+ k, which, if we haven’t yet reached termination,

is less than 2f + 1. It is thus safe for the primary to wait for another message, since

there is at least one honest replica it hasn’t heard from yet.

80



Step 2

All honest nodes will send valid accept messages to the primary, and thus Step 2 will

terminate when the primary receives these 2f + 1 messages. If an honest replica has

no candidate certificate for which it is waiting for votes, it sends an accept message

immediately. Replicas that wait for votes do so only for certificates that appear valid

to them. This implies that the certificate contains grants from at least f + 1 honest

replicas and those replicas will vote for either that certificate or a later one. Thus any

replica that is waiting for votes will receive them, and be able to send an accept

message to the primary.

Note that it is important for replicas to vote for all (possibly several) valid can-

didate timestamps. This addresses a situation that arises when some honest replicas

have processed a write-2 message for a later request, and hence hold a currentC

certificate that is more recent than that known by the remaining honest replicas. If

replicas only voted for their most recent currentC, it may not be possible to obtain

a full quorum of matching votes.

It is also important that replicas accept matching votes for a certificate later than

their candidates. This handles the case where an honest replica is behind the latest

system state, and waiting for votes for candidate certificates that are older than the

most recently committed operation. The replica will not receive a quorum of votes

for its candidates, but may accept matching votes for the newer certificate.

We note that a given round of contention resolution may not succeed in executing

any operations, since there may not be any operation that is known by the f + 1

valid replicas participating in the voting phase. Any legitimate client that requests

contention resolution will send a resolve to all replicas however, containing the

write operation that triggered contention. Once receiving this message, a replica will

add the operation to ops, and vote for the operation in any subsequent contention

resolution round. Thus progress is guaranteed once each replica has processed the

resolve request from a particular client.
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8.4 State Transfer with Authenticators

The state transfer protocol, described in Chapter 6, requires modifications to function

correctly when using authenticators. We can no longer guarantee that backupC and

currentC certificates from an honest replica will appear valid to other replicas, and

must adjust the protocol to accommodate this. Snapshots and log segments contain

no certificates, and hence function identically under the authenticator scheme.

State transfer using authenticators is more conservative than in the signature

protocol, in that it may only advance a slow replica’s state to the lowest backupC,

rather than currentC. This does not pose a liveness problem, however, since the slow

replica will always advance at least up to the newC certificate that triggered state

transfer.

If the backupC and currentC certificates in the shortest log segment (at least

as long as newC.ts − 1) appear valid to the replica, then they may be processed as

normal, according to the standard state transfer protocol. If the authenticators in

these certificates do not appear valid however, additional processing is required.

When replacing signatures with authenticators, clients are no longer able to verify

the integrity of a certificate. Moreover, the certificates themselves do not provide

proof that an operation is valid during contention resolution; rather the proof is

provided by votes during the voting phase. Hence it is sufficient for a replica to store

backupC and currentC certificates that don’t appear to contain a quorum of valid

MACs, so long as the replica is able to guarantee that the certificates represent valid

states.

The replica waits for f + 1 matching snapshots and log segments up to at least

new.ts − 1. As in Chapter 6, the currentC response from a replica may be used in

place of the final log entry, if the replica has currentC.ts = newC.ts−1. The matching

log segments may extend up to newC.ts − 1, or may continue beyond newC.ts − 1;

these two cases handled separately below.

• If the log segment does not extend beyond newC.ts−1, then backupC at the slow

replica is replaced by the certificate corresponding to the end of the shortest log
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segment. The replica may then execute the operation corresponding to newC,

which will appear in the ops response from a valid replica. We are guaranteed

that the operation corresponding to newC will appear in ops from at least one

replica, since newC contains grants from at least f + 1 honest replicas, each of

which will store the operation in ops.

• If the certificate corresponding to the end of the shortest log segment has ts ≥

newC.ts, then the system has progressed beyond newC.ts, and is not stalled

waiting for a response to newC. The certificate at the end of the log segment

must be valid and have committed, since it matches f other log entries, and

hence it may be used to replace currentC at the slow replica.

We are unable to replace backupC at the slow replica, however, as we may not

receive any certificate for this previous timestamp. Instead, backupC is set to

null. We discuss modifications to the protocol to accommodate a null backupC,

in the following section.

8.4.1 null backupCs

As noted previously, a replica may have a null backupC as a result of state trans-

fer. backupC is ordinarily used to replace currentC when it is rolled back during

contention resolution. This is not a concern here since the currentC obtained in the

second scenario of state transfer is retrieved from the backupC in f + 1 matching log

segments, and is guaranteed to have committed, hence will not be rolled back.

A replica is free to respond to write requests while holding a null backupC, and

will replace this with currentC when the next operation is executed.

backupC is used during contention resolution in Section 8.2.2, in Step 2 of the

startQ validation protocol. While a replica with a null backupC will be unable to

perform the check as described, it is able to retrieve the corresponding backupC.ts

and backupC.h information from its log to perform the equivalent check.

The final situation where backupC is usually required is in the response to a state

transfer request. The replica may have to respond to a state transfer request to
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facilitate liveness; this is necessary where the replica sends a grant to a client for

currentC.ts+1, the client performs a write-2 at a slow replica, and a state transfer

response is required to bring it up to date.

The replica sends its state response as before, but with a null backupC. The log

in the response will cover timestamps up to and including currentC.ts. If the system

is stalled and the state responses extend to newC.ts−1, as in the first scenario above,

then the replica’s currentC will contribute towards backupC at the slow replica. The

slow replica will assign newC to currentC, and retrieve the corresponding operation

from ops. If the scenario is instead the second case, where log segments extend beyond

newC, then the replica must have executed operations above currentC.ts, in which

case backupC will no longer be null. Hence in both cases state transfer is possible

regardless of the null backupC.
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Chapter 9

Performance Evaluation

We examine here the performance characteristics of the HQ protocol, with respect

to BFT and Q/U, the two canonical agreement-based and quorum-based replication

protocols respectively.

Our focus is on write-only workloads. All three protocols offer efficient one-phase

read optimizations, and we expect similar performance for reads. Write operations

require running of the replication protocols, and place far higher load on the systems

themselves.

9.1 BFT Improvements

We first discuss the performance improvements made to BFT in the process of eval-

uating the performance of HQ. These changes improve the scalability of the BFT

protocol, and are implemented to provide a strong benchmark to compare our per-

formance against.

The original implementation of BFT, while very comprehensive, was optimized

for high performance in broadcast environments and with low value of f , e.g. f = 2.

While BFT performance has been criticized, particularly with regard to throughput

at high f [1], much of the limitations observed have been an artifact of the implemen-

tation itself and not the BFT protocol. In this work we place particular emphasis on

scalable performance with increasing f , and hence make a number of modifications
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to the BFT implementation.

The first modification is the use of MACs rather than authenticators in agreement

protocol messages. The original BFT implementation was designed to be deployed on

a single network with IP multicast, broadcasting the same message to each replica,

hence requiring authenticators so that a single message can be verified by all replicas.

If we deploy BFT in a more common distributed environment, however, with uni-

cast communication between replicas, these authenticators are not required, and add

linearly scaling overhead to each message. Instead we replace authenticators with a

single MAC per message, greatly reducing message size for large replica sets.

As with HQ, we also extend BFT to support preferred quorums under failure-free

operation. The benefits of preferred quorums are more significant in BFT than HQ or

Q/U, as preferred quorums yield an approximately one-third reduction in the number

of replicas involved in the quadratic communication phases of the protocol.

Along with the aforementioned protocol modifications, we redeployed the BFT

code base with TCP communication, rather than UDP and manual flow control in

the original implementation. This avoids costly message loss due to congestion at

high f and maximum throughput. TCP is a more carefully engineered protocol than

the original flow control implementation, and offers more predictable performance.

The performance benefits of these relatively small modifications is quite signifi-

cant, as exhibited in Section 9.3.

9.2 Analysis

We begin our evaluation with a theoretical analysis of HQ, BFT and Q/U. This

affords us a direct comparison with the Q/U protocol. We were unable to obtain the

Q/U source code to examine its performance experimentally.

Focus here is on performance in the optimistic case of no write contention and

no failures. For both HQ and Q/U we assume the use of preferred quorums and

MACs/authenticators rather than signatures. We also assume the optimistic case

of one-phase writes under Q/U, rather than the two phases required when client
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knowledge of system state is stale. These results hence give an upper bound for

Q/U performance, and a lower bound for its overhead. Three variants of BFT are

examined: the original BFT algorithm, using authenticators and without preferred

quorums; BFT-MACs, using MACs rather than authenticators, but no preferred quo-

rums; and BFT-opt, using both MACs and preferred quorums. We assume that all

protocol communication is done via point-to-point message exchange, rather than IP

multicast.

Figures 9-1 and 9-2 show the communication patterns for BFT and HQ respec-

tively; the communication pattern for Q/U is similar to the first phase of HQ, with a

larger number of replicas (5f + 1). We assume here that write latency is dominated

by the number of message delays required to process a request, as will be the case for

write operations requiring relatively little application level processing. We thus ob-

serve that the latency of HQ is lower than that of BFT, and the latency for Q/U half

of that for HQ. One point to note is that BFT can be optimized so that replicas reply

to a client request following the prepare phase, eliminating commit-phase latency in

the absence of failures; with this optimization, BFT can achieve the same latency as

HQ. To amortize its quadratic message costs however, BFT employs batching, com-

mitting a group of operations as a single unit, as examined in Section 9.3.4. This can

lead to additional latency over a quorum-based scheme with lower message overhead.

Client

Primary

Replica 1

Replica 2

Replica 3

Request Pre-Prepare Prepare Commit Reply

Figure 9-1: Agreement-based protocol communication pattern (BFT).
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Client

Replica 0

Replica 1

Replica 2

Replica 3

Write 1 Write 1 OK Write 2 Write 2 OK

Figure 9-2: Quorum-based protocol communication pattern (HQ).

Figures 9-3 and 9-4 show the total number of message exchanges required to order

a write request in the three systems; the figure shows both the load per server and

the load per client. BFT-MACs is not shown as it has the same message load as

BFT-opt. Consider first Figure 9-3, which shows the load at each server. In both

HQ and Q/U, servers process a constant number of messages to carry out a write

request: 4 messages in HQ and 2 in Q/U. In BFT, however, the number of messages

is linear in f : For each write operation that is ordered by BFT, each replica must

process 12f + 2 messages. This is reduced to 8f + 2 messages in BFT-opt through

our use of preferred quorums.

Message load at each client is shown in Figure 9-4. We see that BFT-opt has

the lowest cost, only requiring a client to send a request to all replicas, and receive

a quorum of replies. Q/U also requires only one message exchange, but has larger

quorums, for a total of 9f +2 messages (5f +1 requests, 4f +1 replies). HQ has two

message exchanges but has quorums of size 2f + 1; therefore the number of messages

processed at the client is 9f +4 (3f +1 phase 1 requests, 2f +1 phase 1 replies, phase

2 request and phase 2 replies), similar to Q/U.

A different picture is portrayed in Figures 9-5 and 9-6, which take into considera-

tion the actual sizes of the messages involved in protocol communication. We compute

these sizes using 20-byte SHA-1 digests [33] and HMAC authentication codes [32], 44
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Figure 9-3: Total messages sent/received at each server per write operation in BFT,
Q/U, and HQ

byte TCP/IP overhead, and a nominal request payload of 256 bytes. Analyze of Q/U

is done on the fully optimized version, using compact timestamps and replica histories

pruned to the minimum number of two candidates [1].

The results for BFT in Figure 9-5 show that our optimizations (MACs and pre-

ferred quorums) have a major impact on the byte count at replicas. The use of MACs

rather than authenticators causes the number of bytes to grow only linearly with f as

opposed to quadratically as in BFT, as shown by the BFT-MACs line; an additional

linear reduction in traffic occurs through the use of preferred quorums, as shown by

BFT-opt line. We note that BFT was originally designed for a broadcast environ-

ment, and hence the linearly scaling message sizes resulted only in a linearly scaling

communication load per replica, as each replica sends a constant number of messages

with respect to f . When deployed on a unicast communication fabric however, as

is common in modern incarnations, each replica sends a linearly scaling number of

messages, leading to quadratic communication load.

Figure 9-5 also shows results for HQ and Q/U. The responses the write-1 re-

quests in HQ contain an authenticator, with write-2 requests containing a certifi-
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Figure 9-4: Total messages sent/received at each client per write operation in BFT,
Q/U, and HQ

cate, both growing quadratically with f . Q/U is similar: The response to a write

returns what is effectively a grant (replica history), with these combined to form a

certificate (object history set), which is sent in the next write request. The grants

in Q/U are considerably larger than those in HQ however, and also contain larger

authenticators (size 4f + 1 instead of 2f + 1), resulting in more bytes per request in

Q/U than HQ. While HQ and Q/U are both affected by quadratically-sized certifi-

cates, this becomes a problem more slowly in HQ. At a given value of f = x in Q/U,

each certificate contains the same number of grants as in HQ at f = 2x.

Bandwidth required at the client in bytes/request is illustrated in Figure 9-6.

Client load for BFT is low, since the client simply sends a request to all replicas

and receives a quorum of responses. The load for Q/U is the highest, owing to the

quadratically growing certificates, larger grants, and communication with approxi-

mately twice as many replicas.
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9.3 Experimental Results

This section provides performance results for HQ and BFT in the case of no failures.

9.3.1 Experimental Setup

We focus on write performance in a simple counter service, supporting increment and

fetch operations as in Q/U [1]. This results in negligible operation cost, allowing us to

focus on protocol overhead itself. The system supports multiple counter objects. Each

client request operates on a single object and the client waits for a write to return

before executing any subsequent request. We vary the level of write contention by

the use of two types of objects—a private object for each client, and a single shared

object for all. In the non-contention experiments different clients operate on their

own independent objects, while in the contention experiments a certain percentage

operate on the shared object, to obtain the desired level of write contention.

To allow meaningful comparisons of HQ and BFT, we produced new implemen-

tations of both, derived from a common C++ code base. Communication is imple-
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Figure 9-6: Total traffic sent/received at each client per write operation in BFT, Q/U,
and HQ

mented over TCP/IP sockets, and we use SHA-1 digests for HMAC message authen-

tication. HQ uses preferred quorums; BFT-MACs and BFT-opt use MACs instead

of authenticators, with the latter running preferred quorums. Client operations in

the counter service consist of a 10 byte op payload, with no disk accesses required in

executing operations.

The performance experiments run on Emulab [46], utilizing 66 pc3000 machines.

These contain 3.0 GHz 64-bit Xeon processors with 2GBs of RAM, each equipped

with gigabit NICs. The emulated topology consists of a 100Mbps switched LAN with

near-zero latency, hosted on a gigabit backplane with a Cisco 6509 high-speed switch.

Network bandwidth was not found to be a limiting factor in any of the experiments.

All machines run Fedora Core 4, with Linux kernel 2.6.12.

Sixteen machines of the Emulab machine are used to host a single replica each,

providing support for up to f = 5, with each of the remaining 50 machines hosting two

clients. The number of logical clients is varied between 20 and 100 in each experiment,

to obtain maximum possible throughput. This large number of clients is needed to

fully load the system since clients are restricted to only one operation at a time.
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Each experiment runs for 100,000 client operations of burn-in time to allow per-

formance to stabilize, before recording data for the following 100,000 operations.

Five repeat runs were recorded for each data-point, with the variance too small to

be visible in the following plots. The main performance metric observed in these

experiments is maximum system throughput. Message count and bandwidth utiliza-

tion were observed and found to closely match the analysis presented in the previous

section.

9.3.2 Non-contention Throughput

Our first experiments are performed in the absence of write contention, observing

maximum throughput along with scalability with increasing f . We keep BFT batch

size at 1; batch size is explored in Section 9.3.4. System throughput is found to be

CPU bound in all experiments, owing to message processing expense and crypto-

graphic operations, along with kernel message handling overhead. The network itself

poses no limiting effects—bandwidth limits are not reached, and the number of clients

is kept sufficiently high to ensure that request load is not limited by RTT or the delay

in completing requests.

Figure 9-7 shows higher throughput in HQ than the BFT variants. This is a

result of the lower message count and fewer communication phases required by the HQ

protocol. The figure also shows significant benefits for the two BFT optimizations: the

reduction in message size achieved by BFT-MACs, and the reduced communication

and cryptographic processing costs in BFT-opt.

Throughput in HQ drops by 50% as f grows from 1 to 5, a consequence of the

overhead of computing larger authenticators in grants, along with receiving and val-

idating larger certificates. The BFT variants show slightly worse scalability, due

to the quadratic number of protocol messages. We note from the previous analysis

that both the HQ and optimized BFT protocols scale similarly in the volume (in

bytes) of protocol communication. This volume is spread over a constant number of

increasingly-sized messages in HQ however, with an increasing number of constant-

sized messages in the optimized variants of BFT. This greater number of messages
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to process in BFT leads to higher CPU overhead than in HQ, owing to the higher

kernel overhead in processing each message.
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Figure 9-7: Maximum non-batched write throughput under varying f .

Based on the analysis in Section 9.2, we expect Q/U to provide somewhat less

than twice the throughput of HQ at f = 1. It requires half the server message

exchanges but more processing per message, owing to larger messages and more MAC

computations. We also expect Q/U to scale less well than HQ, since its message

exchanges and processing grow more quickly with f than HQ’s.

9.3.3 Resilience Under Contention

Of particular interest is performance in the presence of write contention, as this is an

area handled poorly by previous quorum protocols [1]. When multiple write requests

are issued concurrently it becomes far less likely that a single client will receive a

matching quorum of grants. Agreement-based protocols such as BFT are unaffected

by contention however, since ordering is computed by a single entity—the primary.

HQ employs the use of BFT during contention to capitalize on these performance

benefits.
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Figure 9-8 shows maximum throughput for HQ with f = 1, ..., 5 in the presence

of write contention. Contention factor as presented in the figure is the fraction of

writes executed on a single shared object. At contention factor 1, all writes execute

on the same object, requiring contention resolution or writeback operation in almost

all cases. The figure shows that HQ performance degrades gracefully as contention

increases. Throughput reduction flattens significantly at high rates of write contention

because multiple contending operations are included in the same startQ; hence they

are ordered with a single round of BFT, achieving a degree of write batching. At

f = 2 with contention factor 0.1, an average of 3 operations are ordered per round of

contention resolution, while at contention factor 1 this increases to 16 operations per

round.
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Figure 9-8: HQ throughput under increasing write contention.

BFT performance under contention is as presented in Figure 9-7. Performance

crosses over between HQ and BFT at around 25% contention, beyond which BFT

outperforms HQ.
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9.3.4 BFT Batching

In the previous section we saw that HQ throughput benefits from the inclusion of

multiple operations in the same round of contention resolution. This technique is

possible on a larger scale in BFT through the use of batching [7]. Under batched

operation, the BFT primary buffers a number of client write requests, running the

agreement protocol only once for the whole group. This is a technique possible in

all primary-driven agreement protocols, but not possible under quorum schemes such

as HQ, owing to the lack of a centralized coordinator to order operations within a

batch. Batching has the potential to greatly reduce internal protocol communication,

increasing throughput, albeit with additional client delay. The additional delay is

low when system load is high however, since the high rate of client requests allows

the primary to send batches at high frequency. Since batching is used primarily to

reduce protocol overhead at high load, the overhead in client delay is typically low.

Figure 9-9 shows the effect of batching on BFT performance, for our optimized

version of BFT. The number in brackets in the legend corresponds to the number of

requests batched in each round of the protocol, for 1, 2, 5, and 10 messages. We see

a significant improvement in throughput with increasing batch size, surpassing HQ

above a batch size of 2. A batch size of 10 incurred less than 5ms additional delay,

with the system loaded by 100 continuously active clients.
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Chapter 10

Related Work

There is a vast body of research in the areas of fault tolerance and state machine

replication. We present a brief overview of replication protocols for tolerating fail-stop

faults, and protocols that provide Byzantine-fault-tolerance with weaker semantics

than HQ, such as assuming synchrony or offering a restricted operations interface.

Our main focus, however, is on Byzantine-fault-tolerant state machine replication

protocols that provide support for general operations in an asynchronous environment,

such as the BFT [7] and Q/U [1] protocols.

10.1 Fail-stop Fault Tolerance

Initial proposals for fault tolerant replicated systems assumed a fail-stop or benign

fault model [11, 43, 34, 16]. In such a model, replicas may fail by stopping or by

disconnecting from the network, but must otherwise behave correctly.

Notable of these protocols are the Oki and Liskov Viewstamped Replication proto-

col [34], later deployed in the Harp system [21], and Lamport’s Paxos algorithm [16].

While Viewstamped Replication implements state machine replication [44] (for or-

dering multiple client operations) and Paxos is presented purely as an agreement

algorithm (reaching agreement on only a single operation), they are in essence very

similar. Both protocols utilize a primary-backup mechanism [2] to facilitate agree-

ment, where a primary replica assigns a sequence number to client requests. A view-
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change protocol is used to replace a faulty primary, utilizing quorums [11] to ensure

that existing ordering information persists with the new primary.

10.2 Byzantine Fault Tolerance

Byzantine-fault-tolerant replication protocols make no assumptions about the behav-

ior of replicas, and assume they may act arbitrarily or maliciously [35, 17]. Initial

proposals [35, 17, 42, 10, 13] assumed that communication is synchronous, which

is not the case in an environment such as the Internet, but more recent protocols

support an asynchronous communication model.

Protocols for Byzantine-fault-tolerant services are generally divided into two

approaches—a primary-driven agreement (state machine replication) approach, or

a client-controlled quorum approach.

10.2.1 Byzantine Agreement

Agreement based protocols follow a primary-backup model for replication, where a

primary replica assigns a sequence number to all operations. Pure agreement or

consensus protocols provide agreement on a single operation [3, 5, 4]. As such they

form the foundation for protocols such as BFT, but do not support state machine

replication for multiple sequential operations.

State machine replication protocols are designed to support agreement on a con-

tinual series of client operations. The Rampart [36] and SecureRing [13] protocols

implement state machine replication for synchronous networks. These protocols rely

on group communication to reach consensus, and use failure detectors to remove

faulty replicas from the consensus group. Accurate failure detection is not possible

in asynchronous networks, however [23].

The Castro and Liskov BFT protocol [7] supports state machine replication in

asynchronous networks, and is used by the HQ protocol to provide support for con-

current write requests. Like previous state machine replication protocols [36, 13], BFT

requires the theoretical minimum of 3f + 1 replicas to support f faults. The BFT
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agreement protocol proceeds in three phases of inter-replica communication, imposing

communication overhead that scales quadratically in f . A significant benefit of BFT,

as distinct from previous protocols, is that it supports the use of symmetric key cryp-

tography, rather than relying on expensive computationally public key signatures.

The Q/U and HQ protocols both support the use of symmetric key cryptography.

Primary-driven state machine replication protocols provide a single point of seri-

alization for each client operation, and are hence able to offer consistent performance

when writes are issued concurrently. They also support the use of batching, exploited

for significant performance gain in BFT, to amortize the cost of running the agreement

protocol over a number of operations.

10.2.2 Byzantine Quorums

Byzantine quorum systems were introduced by Malkhi and Reiter [26]. The basic al-

gorithm behind these systems involves clients leading the protocol through a sequence

of phases; in each phase a client reads or writes data to a quorum, and the quorum

intersection property [11] guarantees that reads will always return the outcome of the

most recently completed write (or a concurrent write).

The initial Byzantine quorum constructions were designed to handle only read and

blind write operations. These are less powerful than state machine replication with

general operations (provided by HQ), where the outcome of an operation can depend

on the history of previously executed operations. Byzantine quorum protocols were

later extended to support complex operations with benign clients in Phalanx [25].

The subsequent Fleet system [27] prevents malicious clients from diverging system

state, requiring 4f + 1 replicas. Fleet has been further extended to support state

machine replication [8], with four round trips per operation and a minimum of 5f +1

replicas (6f + 1 if symmetric key cryptography is used).

Rosebud [40] presents a Byzantine-fault-tolerant storage architecture, with a single-

phase quorum protocol at its core, providing support for reads and blind writes. It

requires only 3f + 1 replicas but does not support Byzantine clients. The BFT-BC

protocol [22] extends this work to build a three-phase quorum protocol (two-phase in
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the optimal case) with 3f + 1 replicas that handles arbitrary client behavior. This

research provided much of the motivation for the development of HQ.

The recent Q/U protocol [1], by Abd-El-Malek et al., presents a novel “optimistic”

quorum-replication protocol for Byzantine-fault-tolerance. Q/U is designed to provide

levels of performance similar to agreement-based approaches (such as BFT) for small

system sizes, and outperform these protocols when scaling to large values of f . Writes

execute in two-phases in Q/U, or one phase when only a single client is writing to

an object. In the first phase the replica obtains a summarized history of system

state from the replicas, and in the second phase provides a matching quorum of state

history entries to each replica, requesting execution of the write operation at the next

sequence number in this state. State histories are maintained at clients to facilitate

repair when the state at replicas diverges.

Q/U requires 5f + 1 replicas, and quorums of size 4f + 1; this is shown to be

the minimum number of replicas required for two-phase agreement in a quorum-

replication scheme. Performance for Q/U degrades significantly when there are con-

current writes, where replicas accept writes from different clients at the same sequence

number. The repair process used to establish consistent state involves clients per-

forming exponential backoff while attempting establish consistent state; this repair

process requires clients to perform a barrier operation at a quorum of replicas, halting

progress, and to propagate state across replicas. The repair process greatly reduces

system throughput where multiple clients are attempting concurrent writes.

Q/U also demonstrates for the first time how to adapt a quorum protocol to im-

plement state machine replication for multi-operation transactions with Byzantine

clients. This is an important development, since the application space in quorum

schemes is often partitioned into multiple objects, to minimize performance degra-

dation during concurrent writes. Another feature pioneered by Q/U is the use of

preferred quorums, to constrain communication to a single quorum of replicas under

normal operation. This reduces the active replica set from 5f + 1 to 4f + 1 in Q/U,

and from 3f + 1 to 2f + 1 in both BFT and HQ.

In work performed concurrently with that on Q/U, Martin and Alvisi [28] discuss
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the trade-off between number of rounds and number of replicas for reaching agreement,

a building block that can be used to construct state machine replication. They prove

that 5f +1 replicas are needed to ensure agreement is reached in two communication

steps, and present FaB Paxos, a replica-based algorithm that shows this lower bound is

tight. They also present a parametrized version of FaB Paxos that requires 3f +2t+1

replicas—it is safe despite up to f Byzantine failures, and provides two-step consensus

with up to t Byzantine failures. The bound of 3f +2t+1 replicas implies their system

can execute with 5f +1 replicas and provide two-step consensus with up to f failures

(t = f), or with 3f + 1 replicas but no longer provide two-step operation if there are

any failures (t = 0).

10.2.3 Hybrid Quorum Replication

Our HQ protocol builds on the work of Q/U and FaB Paxos, but reduces the number of

replicas from 5f +1 to 3f +1, and does not suffer significant performance degradation

during write contention. These improvements are made possible through the use

of Hybrid Quorum replication, a new technique where BFT [7] is used to resolve

write contention. By supplementing a quorum system with an agreement-based state

machine replication protocol, we are able to combine the benefits of quorum schemes

(two-phase writes, scalability to large f), with those of agreement-based protocols

(resilience to write contention, 3f + 1 replicas). To our knowledge we are the first to

combine these approaches into a hybrid protocol.

The BFT module included in HQ is used to reach agreement on a set of concurrent

write operations, rather than assign an ordering to individual operations as in tradi-

tional state machine replication. In this regard it is similar to Byzantine consensus

protocols, such as FaB Paxos [28].

Kursawe’s Optimistic Byzantine Agreement protocol [14], provides support for

both optimistic and pessimistic agreement, but is less flexible than the HQ protocol.

This protocol provides two-step agreement with 3f +1 replicas during “well-behaved”

executions, during which messages are received within delay bounds and there are no

replica failures. If the system deviates from a well-behaved execution, the protocol
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permanently switches to a traditional agreement protocol. HQ uses BFT to resolve

instances of write contention, but returns to the optimistic quorum protocol for sub-

sequent operations.

10.3 Further Developments

The recent Li and Mazières BFT2F protocol [20] addresses the question of what guar-

antees can be provided when more than f replicas fail in a Byzantine-fault-tolerant

replicated system. Existing protocols provide no guarantees above f faults, and bad

replicas may deliver incorrect state to clients without detection in both BFT and HQ.

The authors of BFT2F modify the BFT protocol to prevent the fabricating operations

beyond f failures, and support fork* consistency between f and 2f failures, a weaker

form of fork consistency [30].

Yin, Martin et.al., [47] develop a technique for separating the agreement process

in Byzantine-fault-tolerant state machine replication from the execution of the actual

operations. This is an important optimization, and allows agreement to be conducted

on a set of 3f + 1 replicas, while reducing the number of the more expensive storage

and execution replicas to only 2f +1. We believe the same techniques may be applied

to the HQ protocol, to reduce the number of storage replicas in the system.
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Chapter 11

Conclusions

We have presented HQ Replication, a novel protocol for Byzantine-fault-tolerant state

machine replication. HQ employs a new hybrid quorum approach, combining the

benefits of a client-controlled, quorum-based protocol, with agreement-based classical

state machine replication. Through this combination, HQ is able to provide low-

overhead execution in the absence of contending updates, while efficiently serializing

concurrent requests under agreement where required.

HQ offers greater resilience against contention collapse than previous quorum ap-

proaches, while avoiding the excessive communication of traditional agreement proto-

cols. Furthermore, HQ reduces the required number of replicas from 5f + 1 in earlier

proposals [1, 29] to the theoretical minimum of 3f + 1 replicas. This is important

both from a practical standpoint, and to minimize the probability of failure within a

replica group.

Under normal operation, HQ employs an optimistic approach to ordering client

requests, using BFT to resolve instances of contention when this optimism fails. The

hybrid quorum approach can be used broadly; for example it could be used in Q/U

to handle write contention, where BFT would only need to run at a predetermined

subset of 3f + 1 replicas.

As part of our analysis we presented a new implementation of the BFT protocol,

developed to scale effectively with f . We found this implementation to perform well,

and not exhibit the scalability problems highlighted in earlier work [1].
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Our performance claims are supported with theoretical and experimental analy-

sis, comparing HQ with two notable quorum-based and agreement-based protocols

respectively: Q/U and BFT. We summarize the conclusions of our analysis, and the

trade-offs between HQ, Q/U and BFT, in the following three suggestions for system

choice:

• In the region we studied (up to f = 5), if contention is low, low request latency

is the primary concern, and it is acceptable to use 5f + 1 replicas, Q/U is the

best choice. It offers the lowest request latency under optimal conditions, albeit

with higher bandwidth overhead. If the overhead of 5f + 1 replicas is too high,

then HQ is most appropriate, since it outperforms BFT with low batch size,

while providing two-phase write operations.

• If maximum system throughput is the primary objective, or contention or fail-

ures are high, BFT is the best choice. BFT handles high contention workloads

without any performance degradation, and can outperform HQ and Q/U in

terms of throughput through the use of request batching.

• Outside of the studied region (f > 5), we expect HQ will scale best with

increasing f . Our results show that as f grows, HQ’s throughput decreases

more slowly than both Q/U and BFT. HQ outperforms Q/U because of the

latter’s larger messages and processing costs, and beats BFT where batching

cannot compensate for the quadratic number of protocol messages.

105



Bibliography

[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Re-

iter, and Jay J. Wylie. Fault-scalable byzantine fault-tolerant services. In SOSP

’05: Proceedings of the twentieth ACM symposium on Operating systems princi-

ples, pages 59–74, New York, NY, USA, 2005. ACM Press.

[2] Peter A. Alsberg and John D. Day. A principle for resilient sharing of distributed

resources. In Proceedings of the 2nd International Conference on Software Engi-

neering, pages 627–644, San Francisco, CA, October 1976.

[3] G. Bracha and S. Toueg. Asynchronous Consensus and Broadcast Protocols.

Journal of the ACM, 32(4):824–240, 1985.

[4] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantinople:

Practical asynchronous Byzantine agreement using cryptography. In Proceedings

of the 19th ACM Symposium on Principles of Distributed Computing (PODC

2000), Portland, OR, July 2000.

[5] R. Canneti and T. Rabin. Optimal Asynchronous Byzantine Agreement. Tech-

nical Report #92-15, Computer Science Department, Hebrew University, 1992.

[6] Miguel Castro. Practical byzantine fault tolerance. Ph.D. Thesis MIT/LCS/TR-

817, MIT Laboratory for Computer Science, Cambridge, Massachusetts, January

2001.

106



[7] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance and

Proactive Recovery. ACM Transactions on Computer Systems, 20(4):398–461,

November 2002.

[8] G. Chockler, D. Malkhi, and M. Reiter. Backoff protocols for distributed mu-

tual exclusion and ordering. In Proc. of the IEEE International Conference on

Distributed Computing Systems, 2001.

[9] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba

Shrira. Hq replication: A hybrid quorum protocol for byzantine fault tolerance.

In Proceedings of the Seventh Symposium on Operating Systems Design and Im-

plementations (OSDI), Seattle, Washington, November 2006.

[10] J. Garay and Y. Moses. Fully polynomial byzantine agreement for n ¿ 3t pro-

cessors in t+1 rounds. SIAM Journal of Computing, 27(1):247–290, February

1998.

[11] D. K. Gifford. Weighted voting for replicated data. In Proc. of the Seventh

Symposium on Operating Systems Principles, December 1979.

[12] M. P. Herlihy and J. M. Wing. Axioms for Concurrent Objects. In Confer-

ence Record of the 14th Annual ACM Symposium on Principles of Programming

Languages, 1987.

[13] Kim Potter Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The securering

protocols for securing group communication. In HICSS ’98: Proceedings of

the Thirty-First Annual Hawaii International Conference on System Sciences-

Volume 3, page 317, Washington, DC, USA, 1998. IEEE Computer Society.

[14] K. Kursawe. Optimistic byzantine agreement. In Proceedings of the 21st SRDS,

2002.

[15] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.

Comm. of the ACM, 21(7):558–565, July 1978.

107



[16] L. Lamport. The Part-Time Parliament. Report Research Report 49, Digital

Equipment Corporation Systems Research Center, Palo Alto, CA, September

1989.

[17] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM

Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

[18] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gen-

erals problem. ACM Transactions on Programming Languages and Systems

(TOPLAS), 4(3):382–401, 1982.

[19] Leslie. L. Lamport. The implementation of reliable distributed multiprocess

systems. Computer Networks, 2:95–114, 1978.

[20] Jinyuan Li and David Mazires. Beyond one-third faulty replicas in byzantine fault

tolerant systems. In Proceedings of the 4th USENIX Symposium on Networked

Systems Design and Implementation (NSDI), Cambridge, MA, USA, 2007.

[21] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams.

Replication in the Harp File System. In Proceedings of the Thirteenth ACM Sym-

posium on Operating System Principles, pages 226–238, Pacific Grove, California,

1991.

[22] Barbara Liskov and Rodrigo Rodrigues. Byzantine clients rendered harmless.

Technical Report MIT-LCS-TR-994 and INESC-ID TR-10-2005, July 2005.

[23] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[24] D. Malkhi and M. Reiter. Byzantine quorum systems. In Proc. of the 29th ACM

Symposium on Theory of Computing, pages 569–578, El Paso, Texas, May 1997.

[25] D. Malkhi and M. Reiter. Secure and scalable replication in phalanx. In Proc.

of the 17th IEEE Symposium on Reliable Distributed Systems, October 1998.

[26] Dahlia Malkhi and Michael Reiter. Byzantine Quorum Systems. Journal of

Distributed Computing, 11(4):203–213, 1998.

108



[27] Dahlia Malkhi and Michael Reiter. An Architecture for Survivable Coordina-

tion in Large Distributed Systems. IEEE Transactions on Knowledge and Data

Engineering, 12(2):187–202, April 2000.

[28] J.-P. Martin and L. Alvisi. Fast byzantine consensus. In International Conference

on Dependable Systems and Networks, pages 402–411. IEEE, 2005.

[29] Jean-Philippe Martin. Fast byzantine consensus. In DSN ’05: Proceedings of the

2005 International Conference on Dependable Systems and Networks (DSN’05),

pages 402–411, Washington, DC, USA, 2005. IEEE Computer Society.

[30] David Mazières and Dennis Shasha. Building secure file systems out of byzantine

storage. In Proceedings of the Twenty-First ACM Symposium on Principles of

Distributed Computing (PODC 2002), July 2002.

[31] National Institute of Standards and Technology. Digital signature standard.

NIST FIPS PUB 86, U.S. Department of Commerce, 1994.

[32] National Institute of Standards and Technology. Fips 198: The keyed-hash

message authentication code (hmac), March 2002.

[33] National Institute of Standards and Tecnology. Fips 180-2: Secure hash stan-

dard, August 2002.

[34] Brian Oki and Barbara Liskov. Viewstamped replication: A new primary copy

method to support highly-available distributed systems. In Proceedings of the

Seventh ACM Symposium on Principles of Distributed Computing (PODC 1988),

Toronto, Ontario, Canada, 1988.

[35] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of

Faults. Journal of the ACM, 27(2):228–234, April 1980.

[36] M. Reiter. The Rampart toolkit for building high-integrity services. Theory and

Practice in Distributed Systems (Lecture Notes in Computer Science 938), pages

99–110, 1995.

109



[37] Michael K. Reiter. The rampart toolkit for building high-integrity services. In

Selected Papers from the International Workshop on Theory and Practice in

Distributed Systems, pages 99–110, London, UK, 1995. Springer-Verlag.

[38] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-

tures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–

126, February 1978.

[39] M. J. B. Robshaw. Md2, md4, md5, sha and other hash functions. Tech. Rep.

TR-101, RSA Labs, 1995.

[40] Rodrigo Rodrigues and Barbara Liskov. Rosebud: A scalable byzantine-fault-

tolerant storage architecture. MIT LCS TR/932, December 2003.

[41] R. Sandberg et al. Design and implementation of the sun network filesystem.

In Proceedings of the Summer 1985 USENIX Conference, pages 119–130, June

1985.

[42] F. Schneider. Implementing fault-tolerant services using the state machine ap-

proach: a tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

[43] Fred B. Schneider. Synchronization in distributed programs. ACM Trans. Pro-

gram. Lang. Syst., 4(2):125–148, 1982.

[44] Fred B. Schneider. Implementing fault-tolerant services using the state machine

approach: a tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[45] G. Tsudik. Message Authentication with One-Way Hash Functions. ACM Com-

puter Communications Review, 22(5):29–38, 1992.

[46] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac

Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated exper-

imental environment for distributed systems and networks. In Proc. of the Fifth

Symposium on Operating Systems Design and Implementation, pages 255–270,

Boston, MA, December 2002. USENIX Association.

110



[47] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating

agreement from execution for byzantine fault tolerant services. In Proceedings of

the 19th ACM Symposium on Operating Systems Principles, October 2003.

111


