HQ Replication: Properties and Optimizations

James Cowling!, Daniel Myers', Barbara Liskov!, Rodrigo Rodrigues?, and Liuba Shrira®
YMIT CSAIL, 2INESC-ID and Instituto Superior Técnico, 3Brandeis University
{cowling, dsm, liskov, rodrigo, liuba} @csail.mit.edu

Abstract

There are currently two approaches to providing
Byzantine-fault-tolerant state machine replication: a
replica-based approach, e.g., BFT, that uses communi-
cation between replicas to agree on a proposed ordering
of requests, and a quorum-based approach, such as Q/U,
in which clients contact replicas directly to optimistically
execute operations. Both approaches have shortcomings:
the quadratic cost of inter-replica communication is un-
necessary when there is no contention, and Q/U requires
a large number of replicas and performs poorly under
contention.

We present HQ, a hybrid Byzantine-fault-tolerant state
machine replication protocol that overcomes these prob-
lems. HQ employs a lightweight quorum-based protocol
when there is no contention, but uses BFT to resolve con-
tention when it arises. Furthermore, HQ uses only 3f 41
replicas to tolerate f faults, providing optimal resilience
to node failures.

We implemented a prototype of HQ, and we compare
its performance to BFT and Q/U analytically and experi-
mentally. Additionally, in this work we use a new im-
plementation of BFT designed to scale as the number
of faults increases. Our results show that both HQ and
our new implementation of BFT scale as f increases; ad-
ditionally our hybrid approach of using BFT to handle
contention works well.

Preface

This technical report is an extended version of Cowling
et al [4]. The new material can be found in the appen-
dices, which present a discussion of the liveness of our
system and the full protocol for contention resolution
when we avoid the expense of digital signatures in our
base protocol.

1 Introduction

Byzantine fault tolerance enhances the availability and
reliability of replicated services in which faulty nodes
may behave arbitrarily. In particular, state machine repli-
cation protocols [9, 19] that tolerate Byzantine faults al-
low for the replication of any deterministic service.

Initial proposals for Byzantine-fault-tolerant state ma-
chine replication [18, 2] relied on all-to-all communica-
tion among replicas to agree on the order in which to
execute operations. This can pose a scalability problem
as the number of faults tolerated by the system (and thus
the number of replicas) increases.

In their recent paper describing the Q/U protocol [1],
Abd-El-Malek et al. note this weakness of agreement
approaches and show how to adapt Byzantine quorum
protocols, which had previously been mostly limited
to a restricted read/write interface [12], to implement
Byzantine-fault-tolerant state machine replication. This
is achieved through a client-directed process that requires
one round of communication between the client and the
replicas when there is no contention and no failures.

However, Q/U has two shortcomings that prevent the
full benefit of quorum-based systems from being real-
ized. First, it requires a large number of replicas: 5f + 1
are needed to tolerate f failures, considerably higher
than the theoretical minimum of 3f + 1. This increase
in the replica set size not only places additional require-
ments on the number of physical machines and the in-
terconnection fabric, but it also increases the number of
possible points of failure in the system. Second, Q/U per-
forms poorly when there is contention among concurrent
write operations: it resorts to exponential back-off to re-
solve contention, leading to greatly reduced throughput.
Performance under write contention is of particular con-
cern, given that such workloads are generated by many
applications of interest (e.g. transactional systems).

This paper presents the Hybrid Quorum (HQ) replica-
tion protocol, a new quorum-based protocol for Byzan-

tine fault tolerant systems that overcomes these limi-
tations. HQ requires only 3f + 1 replicas and com-
bines quorum and agreement-based state machine repli-
cation techniques to provide scalable performance as f
increases. In the absence of contention, HQ uses a new,
lightweight Byzantine quorum protocol in which reads
require one round trip of communication between the
client and the replicas, and writes require two round trips.
When contention occurs, it uses the BFT state machine
replication algorithm [2] to efficiently order the contend-
ing operations. A further point is that, like Q/U and BFT,
HQ handles Byzantine clients as well as servers.

The paper additionally presents a new implementation
of BFT. The original implementation of BFT [2] was de-
signed to work well at small f; our new implementation
is designed to scale as f grows.

The paper presents analytic results for HQ, Q/U, and
BFT, and performance results for HQ and BFT. Our re-
sults indicate that both HQ and the new implementa-
tion of BFT scale acceptably in the region studied (up
to f = 5) and that our approach to resolving contention
provides a gradual degradation in performance as con-
tention rises.

The paper is organized as follows. Section 2 describes
our assumptions about the replicas and the network con-
necting them. Section 3 describes HQ, while Section 4
describes a number of optimizations and our new imple-
mentation of BFT. Section 5 presents analytic results for
HQ, BFT, and Q/U performance in the absence of con-
tention, and Section 6 provides performance results for
HQ and BFT under various workloads. Section 7 dis-
cusses related work, and we conclude in Section 8. Ap-
pendix A presents a discussion of the liveness of our sys-
tem and Appendix B presents the full protocol for con-
tention resolution when we avoid the expense of digital
signatures in the base protocol.

2 Model

The system consists of a set C = {cy, ..., ¢, } of client
processes and a set R = {rq,...,73741} of server pro-
cesses (or replicas). Client and server processes are clas-
sified as either correct or faulty. Correct processes are
constrained to obey their specification, i.e., they follow
the prescribed algorithms. Faulty processes may deviate
arbitrarily from their specification: we assume a Byzan-
tine failure model [8]. Note that faulty processes include
those that fail benignly as well as those suffering from
Byzantine failures.

We assume an asynchronous distributed system where
nodes are connected by a network that may fail to deliver
messages, delay them, duplicate them, corrupt them, or
deliver them out of order, and there are no known bounds
on message delays or on the time to execute operations.

We assume the network is fully connected, i.e., given a
node identifier, any other node can (attempt to) contact
the former directly by sending it a message.

For liveness, we require only that if a client keeps re-
transmitting a request to a correct server, the reply to that
request will eventually be received, plus the conditions
required for liveness of the BFT algorithm [2] that we
use as a separate module.

We assume nodes can use unforgeable digital signa-
tures to authenticate communication. We denote mes-
sage m signed by node n as (m), . No node can send
(m),, (either directly or as part of another message) on
the network for any value of m, unless it is repeating a
message that has been sent before or it knows n's private
key. We discuss how to avoid the use of computationally
expensive digital signatures in Section 4. Message Au-
thentication Codes (MACsS) are used to establish secure
communication between pairs of nodes, with the nota-
tion (m),,,, indicating a message authenticated using the
symmetric key shared by x and y. We assume a trusted
key distribution mechanism that provides each node with
the public key of any other node in the system, thus al-
lowing establishment of symmetric session keys for use
in MAGCs.

We assume the existence of a collision-resistant hash
function, h, such that any node can compute a digest
h(m) of message m and it is impossible to find two dis-
tinct messages m and m’ such that h(m) = h(m’).

To avoid replay attacks we tag certain messages with
nonces that are signed in replies. We assume that when
clients pick nonces they will not choose a repeated value.

3 HQ Replication

HQ is a state machine replication protocol that can han-
dle arbitrary (deterministic) operations. We classify op-
erations as reads and writes. (Note that the operations
are not restricted to simple reads or writes of portions of
the service state; the distinction made here is that read
operations do not modify the service state whereas write
operations do.) In the normal case of no failures and no
contention, write operations require two phases to com-
plete (we call the phases write-1 and write-2) while reads
require just one phase. Each phase consists of the client
issuing an RPC call to all replicas and collecting a quo-
rum of replies.

The HQ protocol requires 3 f + 1 replicas to survive f
failures and uses quorums of size 2f + 1. It makes use
of certificates to ensure that write operations are prop-
erly ordered. A certificate is a quorum of authenticated
messages from different replicas all vouching for some
fact. The purpose of the write-1 phase is to obtain a time-
stamp that determines the ordering of this write relative
to others. Successful completion of this phase provides

the client with a certificate proving that it can execute its
operation at timestamp ¢. The client then uses this certifi-
cate to convince replicas to execute its operation at this
timestamp in the write-2 phase. A write concludes when
2f + 1 replicas have processed the write-2 phase request,
and the client has collected the respective replies.

In the absence of contention, a client will obtain a us-
able certificate at the end of the write-1 phase and suc-
ceed in executing the write-2 phase. Progress is en-
sured in the presence of slow or failed clients by the
writeBackWrite and writeBackRead operations, allow-
ing other clients to complete phase 2 on their behalf.
When there contention exists, however, a client may not
obtain a usable write certificate, and in this case it asks
the system to resolve the contention for the timestamp in
question. Our contention resolution process uses BFT to
order the contending operations. It guarantees

1. if the write-2 phase completed for an operation o at
timestamp ¢, o will continue to be assigned to ¢.

2. if some client has obtained a certificate to run o at
t, but o has not yet completed, o will run at some
timestamp > t.

In the second case it is possible that some replicas have
already acted on the write-2 request to run o at ¢ and
as a result of contention resolution, they may need to
undo that activity (since o has been assigned a differ-
ent timestamp). Therefore all replicas maintain a single
backup state so that they can undo the last write they ex-
ecuted. However, this undo is not visible to end users,
since they receive results only when the write-2 phase
has completed, and in this case the operation retains its
timestamp.

3.1 System Architecture

The system architecture is illustrated in Figure 1. Our
code runs as proxies on the client and server machines:
the application code at the client calls an operation on
the client proxy, while the server code is invoked by the
server proxy in response to client requests. The server
code maintains replica state; it performs application op-
erations and must also be able to undo the most recently
received (but not yet completed) operation (to handle re-
ordering in the presence of contention).

The replicas also run the BFT state machine replica-
tion protocol [2], which they use to resolve contention;
note that BFT is not involved in the absence of con-
tention.

3.2 Normal Case

We now present the details of our protocol for the case
where there is no need to resolve contention; Section 3.3

—— -
Server |

Proxy | Server
BFT

i
'

! Client g"e"'
' roxy ————— e
! Server |

Proxy | Server
BFT 3f+1

Replicas

Proxy

i
! Client | Cert
; Server |

Proxy | Server
BFT

Figure 1: System Architecture

describes contention resolution. We present an unop-
timized version of the protocol; optimizations are dis-
cusses in Section 4.

The system supports multiple objects. For now we as-
sume that each operation concerns a single object; we
discuss how to extend this to multi-object transactions in
Section 3.6. Writers are allowed to modify different ob-
jects in parallel but are restricted to having only one oper-
ation outstanding on a particular object at a time. Writers
number their requests on individual objects sequentially,
which allows us to avoid executing modification opera-
tions more than once. A writer can query the system for
information about its most recent write at any time.

A write certificate contains a quorum of grants, each
of form (cid, oid, op#, h,p, vs, ts, rid),,., where each
grant is signed by its replica r with id rid. A grant
states that the replica has granted the client with id cid
the right to run the operation numbered op# whose hash
is hoyp On object oid at timestamp ¢s. A write certificate
is valid if all the grants are from different replicas, are
correctly authenticated, and are otherwise identical. We
use the notation c.cid, c.ts, etc., to denote the correspond-
ing components of write certificate c. The vs component
is a viewstamp; it tracks the running of BFT to per-
form contention resolution. A certificate C'1 is later than
certificate C2 if C'1’s viewstamp or timestamp is larger
than that of C'2. (A viewstamp is a pair consisting of the
current BFT view number, plus the number assigned by
BFT to the operation it executed most recently, with the
obvious ordering.)

3.2.1 Processing at the Client

Write Protocol. As mentioned, writing is performed in
two phases. In the first phase the writer obtains a certifi-
cate that allows it to execute the operation at a particular
timestamp in the second phase.

Write-1 phase. The client sends a (WRITE- 1, cid, oid,
op#, op),, request to the replicas. The following replies

are possible:

e (WRITE-1-0K, grantTS, currentC), if the replica
granted the next timestamp to this client.

e (WRITE-1-REFUSED, grantTS, cid, oid, op#, cur-
rentC),,,., if the replica granted the timestamp to
some other client; the reply contains the grant to
that client, plus the information about this client’s
request (to prevent replays).

e (WRITE-2-ANS, result, currentC, rid),,,, if the
client’s write has already been executed (this can
happen if this client is slow and some other client
performs the write for it — see step 2 below).

In a WRITE-1-OK or WRITE- 1 -REFUSED reply, currentC
is the certificate for the latest write done at that replica.

The client discards invalid replies; it processes valid
replies as follows:

1. If it receives a quorum of OKs for the same view-
stamp and timestamp, it forms a write certificate
from the grants in the replies and moves to the
write-2 phase.

2. If it receives a quorum of refusals with the same
viewstamp, timestamp, and hash, some other client
has received a quorum of grants and should be exe-
cuting a write phase 2. To facilitate progress in the
presence of slow or failed clients, the client forms a
certificate from these grants and performs the write
followed by a repeat of its own WRITE-1 request:
it sends a (WRITEBACKWRITE, writeC, wi) to the
replicas, where w1 is a copy of its WRITE- 1 request;
replicas reply with their responses to the WRITE-1.

3. If it receives grants with different viewstamps or
timestamps, it also performs a WRITEBACKWRITE,
this time using the latest write certificate it received.
This case can happen when some replica has not
heard of an earlier write. Writebacks are sent only
to the slow replicas.

4. If it receives a WRITE-2-ANS, it uses the certificate
in the WRITE-2-ANS to move to phase 2. This case
can happen if some other client performed its write
(did step 2 above).

5. If it receives a quorum of responses containing
grants with the same viewstamp and timestamp but
otherwise different, it sends a RESOLVE request to
the replicas; the handling of this request is discussed
in Section 3.3. This situation indicates the possi-
bility of write contention, The replies to the RE-
SOLVE request are identical to replies to a WRITE-1
request, so the responses are handled as described
in this section.

Write-2 phase. The client sends a (WRITE-2, writeC)
request, where writeC is the write certificate it obtained
in phase 1. Then it waits for a quorum of valid matching
responses of the form (WRITE-2-ANS, result, currentC,
rid) ., ; once it has these responses it returns to the call-
ing application. It will receive this many matching re-
sponses unless there is contention; we discuss this case
in Section 3.3.

Read Protocol. The client sends (READ, cid, oid, op,
nonce) ., requests to the replicas. The nonce is used to
uniquely identify the request, allowing a reader to distin-
guish the respective reply from a replay. The response
to this request has the form (READ-ANS, result, nonce,
currentC, rid) .., .

The client waits for a quorum of valid matching replies
and then returns the result to the calling application. If
it receives replies with different viewstamps or times-
tamps, it sends a (WRITEBACKREAD, writeC, cid, oid,
op, nonce),,,. to the (slow) replicas, requesting that they
perform the write followed by the read. Here writeC'is
the latest write certificate received in the replies. This
case can occur when a write is running concurrently with
the read.

3.2.2 Processing at the Replicas

Now we describe processing at the replicas in the ab-
sence of contention resolution. Each replica keeps the
following information for each object:

e currentC, the certificate for the current state of the
object.

o grantT$, a grant for the next timestamp, if one exists

e ops, alist of WRITE-1 requests that are currently un-
der consideration (the request that was granted the
next timestamp, and also requests that have been re-
fused), plus the request executed most recently.

e 0ldOps, a table containing, for each client autho-
rized to write, the op# of the most recently com-
pleted write request for that client together with the
result and certificate sent in the WRITE-2-ANS reply
to that request.

e vs, the current viewstamp (which advances each
time the system does contention resolution).

A replica discards invalid requests (bad format, im-
properly signed, or invalid certificate). It processes valid
requests as follows:

Read request (READ, cid, oid, op, nonce),, . The
replica does an upcall to the server code, passing it the
op. When this call returns it sends the result to the
client in a message (READ-ANS, result, nonce, currentC,

rid),,.. The nonce is used to ensure that the answer is
not a replay.

Write 1 request (WRITE-1, cid, oid, op#, op),. . If
op# < oldOps|cid].op#, the request is old and is dis-
carded. If op# = oldOps|cid].op#, the replica returns
a WRITE-2-ANS response containing the result and cer-
tificate stored in oldOps|cid]. If the request is stored in
ops, the replica responds with its previous WRITE-1-0K
or WRITE-1-REFUSED response. Otherwise the replica
appends the request to ops. Then if grantl'S = null,
it sets grantT'S = (¢, oid, op#, h, vs, currentC.ts+1,
rid),,, where h is the hash of (cid, oid, op#, op) and
replies (WRITE-1-0K, grantTS, currentC); otherwise it
replies (WRITE- | -REFUSED, grantTS, cid, oid, op#, cur-
rentC),,,. (since some other client has been granted the
timestamp).

Write 2 request (WRITE-2, writeC). Any node is per-
mitted to run a WRITE-2 request; the meaning of the
request depends only on the contained certificate rather
than on the identity of the sender. The certificate identi-
fies the client c that ran the write-1 phase and the oid and
op# it requested. The replica uses the oldOps entry for ¢
to identify old and duplicate write-2 requests; it discards
old requests and returns the write-2 response stored in
oldOps|c] for duplicates.

If the request is new, the replica makes an upcall to the
server code to execute the operation corresponding to the
request. A replica can do the upcall to execute a WRITE-
2 request only if it knows the operation correspond-
ing to the request and it is up to date; in particular its
vs = writeC.vs and currentC.ts = writeC.ts — 1. If
this condition isn’t satisfied, it obtains the missing infor-
mation from other replicas as discussed in Sections 3.3
and 3.4, and makes upcalls to perform earlier operations
before executing the current operation.

When it receives the result of the upcall, the replica up-
dates the information in the 0ldOps for c, sets grantTS to
null, sets ops to contain just the request being executed,
and sets currentC = writeC. Then it replies (WRITE-2-
ANS, result, currentC, rid),,., .

WriteBackWrite and WriteBackRead. The replica
performs the WRITE-2 request, but doesn’t send the re-
ply. Then it processes the READ or WRITE-1 and sends
that response to the client.

3.3 Contention Resolution

Contention occurs when several clients are competing to
write at the same timestamp. Clients notice contention
when processing responses to a WRITE- 1 request, specif-
ically case (5) of this processing, where the client has

received conflicting grants for the same viewstamp and
timestamp. Conflicting grants normally arise because of
contention but can also occur because a faulty client has
sent different requests to different replicas.

In either case a client requests contention resolution
by sending a (RESOLVE, conflictC, wl) request to the
replicas, where con flictC'is a conflict certificate formed
from the grants in the replies and w1 is the WRITE-1 re-
quest it sent that led to the conflict being discovered. The
processing of this request orders one or more of the con-
tending requests and performs those requests in that or-
der; normally all contending requests will be completed.

To resolve contention we make use of the BFT state
machine protocol [2], which is also running at the repli-
cas. One of these replicas is acting as the BFT primary,
and the server proxy code tracks this information, just
like a client of BFT. However in our system, we use BFT
only to reach agreement on a deterministic ordering of
the conflicting updates.

3.3.1 Processing at Replicas
To handle contention, a replica has additional state:

e conflictC, either null or the conflict certificate that
started the conflict resolution.

o backupC, containing the previous write certifi-
cate (for the write before the one that led to the
currentC certificate).

e prev, containing the previous information stored in
oldOps for the client whose request was executed
most recently.

A replica that is processing a resolve request has a
non-null value in con flictC. Such a replica is frozen:
it does not respond to client write and resolve requests,
but instead delays this processing until conflict resolution
is complete.

When a non-frozen replica receives a valid (RESOLVE,
clientConflictC, wl) request, it proceeds as follows:

o If currentC is later than clientConflictC, or if
the viewstamps and timestamps match but the re-
quest has already been executed according to the
replica’s oldOps, the conflict has already been re-
solved (by contention resolution in the case where
the viewstamp in the message is less than vs). The
request is handled as a WRITE-1 request.

e Otherwise the replica stores clientConflictC in
conflictC and adds w1 to ops if it is not already
there. Then it sends a (START, conflictC, ops, cur-
rentC, grantTS),, message to the server proxy code
running at the current primary of the BFT protocol.

When the server proxy code running at the primary
receives a quorum of valid START messages (including

one from itself) it creates a BFT operation to resolve the
conflict. The argument to this operation is the quorum of
these START messages; call this start@. Then it causes
BFT to operate by passing the operation request to the
BFT code running at its node. In other words, the server
proxy becomes a client of BFT, invoking an operation on
the BFT service implemented by the same replica set that
implements the HQ service.

BFT runs in the normal way: the primary orders this
operation relative to earlier requests to resolve contention
and starts the BFT protocol to obtain agreement on this
request and ordering. At the end of agreement each
replica makes an upcall to the server proxy code, pass-
ing it start@, along with the current viewstamp (which
has advanced because of the running of BFT).

In response to the upcall, the server proxy code pro-
duces the new system state; now we describe this pro-
cessing. In this discussion we will use the notation
startQ.currentC, startQ.ops, etc., to denote the list of
corresponding components of the START messages in
start@.

Producing the new state occurs as follows:

1. If start@ doesn’t contain a quorum of correctly
signed START messages, the replica immediately re-
turns from the upcall, without doing any process-
ing. This can happen only if the primary is faulty.
The replica makes a call to BFT requesting it to do
a view change; when this call returns, it sends its
START message to the new primary.

2. The replica determines whether startQ.grantTS
forms a certificate (i.e., it consists of a quorum of
valid matching grants). It chooses the grant certifi-
cate if one exists, else the latest valid certificate in
startQ.currentC, call this certificate C'.

3. Next the replica determines whether it needs to
undo the most recent operation that it performed
prior to conflict resolution; this can happen if some
client started phase 2 of a contending write and
the replica had executed its WRITE-2 request, yet
none of the replicas that contributed to start@ knew
about the WRITE-2 and some don’t even know of
a grant for that request. The replica can recognize
the situation because currentC' is later than C'. To
undo, it makes an upcall to the server code, request-
ing the undo. Then it uses prev to revert the state
in 0ldOps for the client that requested the undone
operation, and sets currentC to backupC..

4. Next the replica brings itself up to date by execut-
ing the operation identified by C, if it hasn’t al-
ready done so. This processing may include exe-
cuting even earlier operations, which it can obtain
from other replicas if necessary, as discussed in Sec-
tion 3.4. It executes the operations by making up-

calls to the server code and updates its oldOps to
reflect the outcome of these executions. Note that
all honest replicas will have identical oldOps after
this step.

5. Next the replica builds an ordered list L of opera-
tions that need to be executed. L contains all valid
non-duplicate (according to its oldOps) requests in
start@.ops, except that the replica retains at most
one operation per client; if a (faulty) client submit-
ted multiple operations (different hashes), it selects
one of these in a deterministic way, e.g., smallest
hash. The operations in L are ordered in some de-
terministic way, e.g., based on the cid ordering of
the clients that requested them.

6. The operations in L will be executed in the selected
order, but first the replica needs to obtain certificates
to support each execution. It updates vs to hold the
viewstamp given as an argument of the upcall and
sends a grant for each operation at its selected time-
stamp to all other replicas.

7. The replica waits to receive 2f + 1 valid match-
ing grants for each operation and uses them to form
certificates. Then it executes the operations in L in
the selected order by making upcalls, and updating
ops, oldOps, grantT'S and currentC (as in Write-
2 processing) as these executions occur.

8. Finally the replica clears con flictC and replies to
the RESOLVE request that caused it to freeze (if
there is one); this processing is like that of a WRITE-
1 request (although most likely a WRITE2-ANS re-
sponse will be sent).

Conflict resolution has no effect on the processing of
WRITE-1 and READ request. However, to process re-
quests that contain certificates (WRITE-2, RESOLVE, and
also the write-back requests) the replica must be as up to
date as the client with respect to contention resolution.
The viewstamp conveys the needed information: if the
viewstamp in the certificate in the request is greater than
vs, the replica calls down to the BFT code at its node, re-
questing to get up to date. This call returns the startQ’s
and viewstamps for all the BFT operations the replica
was missing. The replica processes all of this informa-
tion as described above; then it processes the request as
described previously.

A bad primary might not act on START messages, leav-
ing the system in a state where it is unable to make
progress. To prevent this, a replica will broadcast the
START message to all replicas if it doesn’t receive the
upcall in some time period; this will cause BFT to do a
view-change and switch to a new primary if the primary
is the problem. The broadcast is also useful to handle
bad clients that send the RESOLVE request to just a few
replicas.

3.3.2 Processing at Clients

The only impact of conflict resolution on client process-
ing is that a WRITE-2-ANS response might contain a dif-
ferent certificate than the one sent in the WRITE-2 re-
quest; this can happen if contention resolution ran con-
currently with the write 2 phase. To handle this case the
client selects the latest certificate and uses it to redo the
write-2 phase.

3.4 State Transfer

State transfer is required to bring slow replicas up to date
so that they may execute more recent writes. A replica
detects that it has missed some updates when it receives
a valid certificate to execute a write at timestamp ¢, but
has an existing value of currentC.ts smaller than ¢ — 1.

A simple but inefficient protocol for state transfer is to
request state from all replicas, for each missing update
up to ¢ — 1, and wait for f + 1 matching replies. To avoid
transferring the same update from multiple replicas we
take an optimistic approach, retrieving a single full copy
of updated state, while confirming the hash of the updates
from the remaining replicas.

A replica requests state transfer from f + 1 replicas,
supplying a timestamp interval for the required updates.
One replica is designated to return the updates, while f
others send a hash over this partial log. Responses are
sought from other replicas if the hashes don’t agree with
the partial log, or after a timeout. Since the partial log is
likely to be considerably larger than f hashes, the cost of
state transfer is essentially constant with respect to f.

To avoid transferring large partial logs, we propose
regular system checkpoints to establish complete state
at all replicas [2]. These reduce subsequent writeback
cost and allow logs prior to the checkpoint to be dis-
carded. To further minimize the cost of state transfer,
the log records may be compressed, exploiting over-
writes and application-specific semantics [7]; alterna-
tively, state may be transferred in the form of differences
or Merkle trees [15].

3.5 Correctness

This section presents a high-level correctness argument
for the HQ protocol. We prove only the safety properties
of the system, namely that we ensure that updates in the
system are linearizable [6], in that the system behaves
like a centralized implementation executing operations
atomically one at a time. A discussion of liveness can be
found in Appendix A.

To prove linearizability we need to show that there ex-
ists a sequential history that looks the same to correct
processes as the system history. The sequential history

must preserve certain ordering constraints: if an oper-
ation precedes another operation in the system history,
then the precedence must also hold in the sequential his-
tory.

We construct this sequential history by ordering all
writes by the timestamp assigned to them, putting each
read after the write whose value it returns.

To construct this history, we must ensure that different
writes are assigned unique timestamps. The HQ proto-
col achieves this through its two-phase process — writes
must first retrieve a quorum of grants for the same time-
stamp to proceed to phase 2, with any two quorums inter-
secting at at least one non-faulty replica. In the absence
of contention, non-faulty replicas do not grant the same
timestamp to different updates, nor do they grant multi-
ple timestamps to the same update.

To see preservation of the required ordering con-
straints, consider the quorum accessed in a READ or
WRITE-1 operation. This quorum intersects with the
most recently completed write operation at at least one
non-faulty replica. At least one member of the quorum
must have currentC reflecting this previous write, and
hence no complete quorum of responses can be formed
for a state previous to this operation. Since a read writes
back any pending write to a quorum of processes, any
subsequent read will return this or a later timestamp.

We must also ensure that our ordering constraints are
preserved in the presence of contention, during and fol-
lowing BFT invocations. This is provided by two guar-
antees:

e Any operation that has received 2f + 1 matching
WRITE-2-ANS responses prior to the onset of con-
tention resolution is guaranteed to retain its time-
stamp t. This follows because at least one non-
faulty replica that contributes to start@ will have a
currentC such that currentC.ts > t. Furthermore
contention resolution leaves unchanged the order of
all operations with timestamps less than or equal to
the latest certificate in startQ.

e No operation ordered subsequently in contention
resolution can have a quorum of 2f + 1 existing
WRITE-2-ANS responses. This follows from the
above.

A client may receive up to 2 f matching WRITE-2-ANS
responses for a given certificate, yet have its operation
reordered and committed at a later timestamp. Here it
will be unable to complete a quorum of responses to this
original timestamp, but rather will see its operation as
committed later in the ordering after it redoes its write-2
phase using the later certificate and receives a quorum of
WRITE-2-ANS responses.

The argument for safety (and also the argument for
liveness given in Appendix A) does not depend on the

behavior of clients. This implies that the HQ protocol
tolerates Byzantine-faulty clients, in the sense that they
cannot interfere with the correctness of the protocol.

3.6 Transactions

This section describes how we extend our system to sup-
port transactions that affect multiple objects.

We extend the client WRITE-1 request so that now it
can contain more than one oid; in addition it must pro-
vide an op# for each object. Thus we now have (WRITE-
1, cid, oidl, opl#, ..., oidk, opk#, op),.. We still re-
strict the client to one outstanding operation per object;
this implies that if it performs a multi-object operation,
it cannot perform operations on any of the objects used
in that operation until it finishes. Note that op could be a
sequence of operations, e.g., it consists of op1;...; 0pm,
as perceived by the server code at the application.

The requirement for correct execution of a transac-
tion is that for each object it uses it must be executed
at the same place in the order for that object at all repli-
cas. Furthermore it must not be interleaved with other
transactions. For example suppose one transaction con-
sisted of opl(ol);0p2(02) while a second consisted of
op3(01);0p4(02); then the assignment of timestamps
cannot be such that o3 happens after ol while 04 hap-
pens before 02.

We achieve these conditions as follows.

e When a replica receives a valid new multi-object
request, and it can grant this client the next time-
stamp for each object, it returns a multi-grant of
the form (cid, h, vs, olist), , where olist contains
an entry (oid, op#, ts) for each object used by the
multi-object request; otherwise it refuses, returning
all outstanding grants for objects in the request. In
either case it returns its most recent certificate for
each requested object.

e A client can move to phase 2 if it receives a quo-
rum of matching multi-grants. Otherwise it either
does a WRITEBACKWRITE or requests contention
resolution. The certificate in the WRITE-2 request
contains a quorum of multi-grants; it is valid only if
the multi-grants are identical.

e A replica processes a valid WRITE-2 request by
making a single upcall to the application. Of course
it does this only after getting up to date for each ob-
ject used by the request. This allows the application
to run the transaction atomically, at the right place
in the order.

e To carry out a resolve request, a replica freezes for
all objects in the request and performs conflict reso-
lution for them simultaneously: Its START message

contains information for each object identified in
the RESOLVE request.

e When processing start() during contention resolu-
tion, a replica retains a most one valid request per
client per object. It orders these requests in some
deterministic way and sends grants to the other
replicas; these will be multi-grants if some of these
request are multi-object operations, and the time-
stamp for object o will be o.currentC.ts + |L,|,
where L, is L restricted to requests that concern
object o. It performs the operations in the selected
order as soon as it obtains the newC certificate.

4 Optimizations

There are a number of ways to improve the protocol just
described. For example, the WRITE-2-ANS can contain
the client op# instead of a certificate; the certificate is
needed only if it differs from what the client sent in
the request. In addition we don’t send certificates in re-
sponses to WRITE-1 and READ requests, since these are
used only to do writebacks, which aren’t needed in the
absence of contention and failures; instead, clients need
to fetch the certificate from the replicas returning the
largest timestamp before doing the writeback. Another
useful optimization is to avoid sending multiple copies
of results in responses to READ and WRITE-2 requests;
instead, one replica sends the answer, while the others
send only hashes, and the client accepts the answer if it
matches the hashes. Yet another improvement is to pro-
vide grants optimistically in responses to WRITE-1 re-
quests: if the replica is processing a valid WRITE-2 it
can grant the next timestamp to the WRITE-1 even before
this processing completes. (However, it cannot reply to
the WRITE-2 until it has performed the operation.)

Below we describe two additional optimizations: early
grants and avoiding signing. In addition we discuss pre-
ferred quorums, and our changes to BFT.

4.1 Early Grants

The conflict resolution strategy discussed in Section 3.3
requires an extra round of communication at the end of
running BFT in order for replicas to obtain grants and
build certificates.

We avoid this communication by producing the grants
while running BFT. The BFT code at a replica executes
an operation by making an upcall to the code running
above it (the HQ server code in our system) once it has
received a quorum of valid COMMIT messages. We mod-
ify these messages so that they now contain grants. This
is done by modifying the BFT code so that prior to send-
ing commit messages it does a MAKEGRANT upcall to

the server proxy code, passing it start() and the view-
stamp that corresponds to the operation being executed.
The server code determines the grants it would have sent
in processing start(@ and returns them in its response;
the BFT code then piggybacks the grants on the COM-
MIT message it sends to the other replicas.

When the BFT code has the quorum of valid COMMIT
messages, it passes the grants it received in these mes-
sages to the server proxy code along with start@ and
the viewstamp. If none of the replicas that sent COM-
MIT messages is faulty, the grants will be exactly what
is needed to make certificates. If some grants are bad,
the replica carries out the post phase as described in Sec-
tion 3.3.

The grants produced while running BFT could be col-
lected by a malicious intruder or a bad replica. Further-
more, the BFT operation might not complete; this can
happen if the BFT replicas carry out a view change, and
fewer than f + 1 honest replicas had sent out their COM-
MIT messages prior to the view change. However, the
malicious intruder can’t make a certificate from grants
collected during the running of a single aborted BFT op-
eration, since there can be at most 2 f of them, and it is
unable to make a certificate from grants produced during
the execution of different BFT operations because these
grants contain different viewstamps.

4.2 Avoiding Signing

In Section 3, we assumed that grants and WRITE-1 re-
quests were signed. Here we examine what happens
when we switch instead to MACs (for WRITE- 1 requests)
and authenticators (for grants). An authenticator [2] is
a vector of MACs with an entry for each replica; repli-
cas create authenticators by having a secret key for each
other replica and using it to create the MAC for the vector
entry that corresponds to that other replica.

Authenticators and MACs work fine if there is no con-
tention and no failures. Otherwise problems arise due to
an important difference between signatures and authenti-
cators: A signature that any good client or replica accepts
as valid will be accepted as valid by all good clients and
replicas; authenticators don’t have this property. For ex-
ample, when processing start(replicas determined the
most recent valid certificate; because we assumed sig-
natures, we could be sure that all honest replicas would
make the same determination. Without signatures this
won’t be true, and therefore we need to handle things
differently.

The only place where authenticators cause problems
during non-contention processing is in the responses to
WRITE-2 and writeback requests. In the approach de-
scribed in Section 3.2, replicas drop bad WRITE-2 and
writeback requests. This was reasonable when using sig-

natures, since clients can avoid sending bad certificates.
But clients are unable to tell whether authenticators are
valid; they must rely on replicas to tell them.

Therefore we provide an additional response to
WRITE-2 and writeback requests: the replica can send
a WRITE-2-REFUSED response, containing a copy of the
certificate, and signed by it. When a client receives such
a response it requests contention resolution.

The main issue in contention resolution is determin-
ing the latest valid certificate in start(). It doesn’t work
to just select the certificate with the largest timestamp,
since it might be forged. Furthermore there might be two
or more certificates for the same highest timestamp but
different requests; the replicas need to determine which
one is valid.

We solve these problems by doing some extra process-
ing before running BFT. Here is a sketch of how it works;
a full discussion can be found in Appendix B.

To solve the problem of conflicting certificates that
propose the same timestamp but for different requests,
the primary builds start@ from START messages as be-
fore except that start() may contain more than a quorum
of messages. The primary collects START messages until
there is a subset startQ)syp that contains no conflicting
certificates. If two START messages propose conflicting
certificates, neither is placed in start@g,p; instead the
primary adds another message to start() and repeats the
analysis. It is safe for the primary to wait for an ad-
ditional message because at least one of the conflicting
messages came from a dishonest replica.

This step ensures that start(s,, contains at most one
certificate per timestamp. It also guarantees that at least
one certificate in start() s, contains a timestamp greater
than or equal to that of the most recently committed write
operation because start() s, contains at least f + 1 en-
tries from non-faulty replicas, and therefore at least one
of them supplies a late enough certificate.

The next step determines the latest valid certificate.
This is accomplished by a voting phase in which replicas
collect signed votes for certificates that are valid for them
and send this information to the primary in signed AC-
CEPT messages; the details can be found in Appendix B.
The primary collects a quorum of ACCEPT messages and
includes these messages as an extra argument in the call
to BFT to execute the operation. Voting can be avoided if
the latest certificate was formed from startQ.grantT'S
or proposed by at least f + 1 replicas.

This step retains valid certificates but discards forged
certificates. Intuitively it works because replicas can only
get votes for valid certificates.

When replicas process the upcall from BFT, they use
the extra information to identify the latest certificate.
An additional point is that when replicas create the set
L of additional operations to be executed, they add an

operation to L only if it appears at least f 4+ 1 times
in start@.ops. This test ensures that the operation is
vouched for by at least one non-faulty replica, and thus
avoids executing forged operations.

This scheme executes fewer requests than the ap-
proach discussed in Section 3.3. In particular, a write
request that has already reached phase 2 will be executed
in the scheme discussed in Section 3.3, but now it might
not be (because it doesn’t appear at least f + 1 times in
start@.ops). In this case when the WRITE-2 request is
processed by a replica after contention resolution com-
pletes, the replica cannot honor the request. Instead it
sends a WRITE-2-RETRY response containing a grant for
the next timestamp, either for this client or some other
client. When a client gets this response, it re-runs phase
1 to obtain a new certificate before retrying phase 2.

4.3 Preferred Quorums

With preferred quorums, only a predetermined quorum
of replicas carries out the protocol during fault-free peri-
ods. This technique is used in Q/U and is similar to the
use of witnesses in Harp [10]. In addition to reducing
cost, preferred quorums ensure that all client operations
intersect at the same replicas, reducing the frequency of
writebacks.

Since ultimately every replica must perform each op-
eration, we have clients send the WRITE-1 request to all
replicas. However, only replicas in the preferred quorum
respond, the authenticators in these responses contain en-
tries only for replicas in the preferred quorum, and only
replicas in the preferred quorum participate in phase 2. If
clients are unable to collect a quorum of responses, they
switch to an unoptimized protocol using a larger group.

Replicas not in the preferred quorum need to periodi-
cally learn the current system state, in particular the time-
stamp of the most recently committed operation. This
communication can be very lightweight, since only meta-
data and not client operations need be fetched.

4.4 BFT Improvements

The original implementation of BFT was optimized to
perform well at small f, e.g., at f = 2. Our implementa-
tion is intended to scale as f increases. One main differ-
ence is that we use TCP instead of UDP, to avoid costly
message loss in case of congestion at high f. The other
is the use of MAC:s instead of authenticators in protocol
messages. The original BFT used authenticators to allow
the same message to be broadcast to all other replicas
with a single operating system call, utilizing IP multicast
if available. However, authenticators add linearly-scaling
overhead to each message, with this extra cost becoming
significant at high f in a non-broadcast medium.

Write 1 Write 1 OK Write 2
- m%
Replica 2 \/ \/
Replica 3 \/ \/

(a) Quorum-based: HQ

Write 2 OK

Replica 1

Request Pre-Prepare Prepare Commit Reply
Client

Primary M
Replica 1 \
Replica 2 \ \
Replica 3 \

(b) Agreement-based: BFT

Figure 2: Protocol communication patterns.

Additionally, our implementation of BFT allows the
use of preferred quorums.

5 Analysis

Here we examine the performance characteristics of HQ,
BFT, and Q/U analytically; experimental results can be
found in Section 6. We focus on the cost of write opera-
tions since all three protocols offer one-phase read opera-
tions, and we expect similar performance in this case. We
also focus on performance in the normal case of no fail-
ures and no contention. For both HQ and Q/U we use as-
sume preferred quorums and MACs/authenticators. We
show results for the original BFT algorithm (using au-
thenticators and without preferred quorums), BFT-MACs
(using MACs but not preferred quorums), and BFT-opt
(using both MACs and preferred quorums). We assume
the protocols use point-to-point communication.

Figure 2 shows the communication patterns for BFT
and HQ; the communication pattern for Q/U is similar to
the first round of HQ, with a larger number of replicas.
Assuming that latency is dominated by the number of
message delays needed to process a request, we can see
that the latency of HQ is lower than that of BFT and the
latency for Q/U is half of that for HQ. One point to note
is that BFT can be optimized so that replicas reply to the
client following the prepare phase, eliminating commit-
phase latency in the absence of failures; with this opti-
mization BFT can achieve the same latency as HQ. How-
ever, to amortize its quadratic communication costs, BFT
employs batching, committing a group of operations as
a single unit. This can lead to additional latency over a

50

T T —¥

HQ ——
= QU %
8 4ol _ BFT % 4
g BFT-opt x7
g
g Or 4
S X
)
< 20+ .7 T
@
)
2 ¥
8 100 -
=

[SNTN
N PXT
X+

& Pt
[$)]

3
Failures tolerated (f)

(a) Server
50 T T T
HQ —+—
% Q/U -
S 4l BFT ---3%--- i
T BFT-opt
o
5] ¥
Qo
- 30 —
2
el
5]
< 20 —
(%]
(]
[
&]
2 10F -
=
O 1 1 1
1 2 3 4 5
Failures tolerated (f)
(b) Client

Figure 3: Total messages sent/received per write opera-
tion in BFT, Q/U, and HQ

quorum-based scheme.

Figure 3 shows the total number of messages required
to carry out a write request in the three systems; the fig-
ure shows the load at both clients and servers. Consider
first Figure 3a, which shows the load at servers. In both
HQ and Q/U, servers process a constant number of mes-
sages to carry out a write request: 4 messages in HQ and
2 in Q/U. In BFT, however, the number of messages is
linear in f: For each write operation that runs through
BFT, each replica must process 12 f 4+ 2 messages. This
is reduced to 8 f + 2 messages in BFT-opt by using pre-
ferred quorums.

Figure 3b shows the load at the client. Here we see
that BFT-opt has the lowest cost, since a client just sends
the request to the replicas and receives a quorum of re-
sponses. Q/U also requires one message exchange, but it
has larger quorums (of size 4 f + 1), for 9 f 4+ 2 messages.
HQ has two message exchanges but uses quorums of size
2f + 1; therefore the number of messages processed at
the client, 9 f 4 4, is similar in HQ to Q/U.

Figure 4 shows the total byte count of the messages
processed to carry out a write request. This is computed

20 T T T
HQ —— .
QU %
BFT ---%-- x
o 15} BFT-opt i
< BFT-MACs
17
Q
3
8 10} * -
= v
o
o
S
=

Failures tolerated (f)

(a) Server
200 T T T
HQ —+— %
QU X p
BFT -~ :
150 F BFT-opt i
100 % B

Traffic per request (KB)

Failures tolerated (f)
(b) Client

Figure 4: Total traffic sent/received per write operation
in BFT, Q/U, and HQ

using 20 byte SHA-1 digests [17] and HMAC authentica-
tion codes [16], 44 byte TCP/IP overhead, and a nominal
request payload of 256 bytes. We analyze the fully op-
timized version of Q/U, using compact timestamps and
replica histories pruned to the minimum number of two
candidates. The results for BFT in Figure 4a show that
our optimizations (MACs and preferred quorums) have a
major impact on the byte count at replicas. The use of
MAC:s causes the number of bytes to grow only linearly
with f as opposed to quadratically as in BFT, as shown
by the BFT-MAC:s line; an additional linear reduction in
traffic occurs through the use of preferred quorums, as
shown by BFT-opt line.

Figure 4a also shows results for HQ and Q/U. In HQ
the responses to the WRITE-1 request contains an au-
thenticator and the WRITE-2 request contains a certifi-
cate, which grows quadratically with f. Q/U is simi-
lar: The response to a write returns what is effectively a
grant (replica history), and these are combined to form a
certificate (object history set), which is sent in the next
write request. However, the grants in Q/U are consid-
erably larger than those in HQ and also contain bigger

authenticators (size 4 f + 1 instead of 2f + 1), resulting
in more bytes per request in Q/U than HQ. While HQ and
Q/U are both affected by quadratically-sized certificates,
this becomes a problem more slowly in HQ: At a given
value of f = x in Q/U, each certificate contains the same
number of grants as in HQ at f = 2z.

Figure 4b shows the bytes required at the client. Here
the load for BFT is low, since the client simply sends the
request to all replicas and receives the response. The load
for Q/U is the highest, owing to the quadratically grow-
ing certificates, larger grants and communication with
approximately twice as many replicas.

6 Experimental Evaluation

This section provides performance results for HQ and
BFT in the case of no failures. Following [1], we focus
on performance of writes in a counter service support-
ing increment and fetch operations. The system supports
multiple counter objects; each client request involves a
single object and the client waits for a write to return
before executing the subsequent request. In the non-
contention experiments different clients use different ob-
jects; in the contention experiments a certain percentage
of requests goes to a single shared object.

To allow meaningful comparisons of HQ and BFT,
we produced new implementations of both, derived from
a common C++ codebase. Communication is imple-
mented over TCP/IP sockets, and we use SHA-1 digests
for HMAC message authentication. HQ uses preferred
quorums; BFT-MACs and BFT-opt use MACs instead
of authenticators, with the latter running preferred quo-
rums. Client operations in the counter service consist of
a 10 byte op payload, with no disk access required in
executing each operation.

Our experiments ran on Emulab [20], utilizing 66
pc3000 machines. These contain 3.0 GHz 64-bit Xeon
processors with 2GBs of RAM, each equipped with giga-
bit NICs. The emulated topology consists of a 100Mbps
switched LAN with near-zero latency, hosted on a giga-
bit backplane with a Cisco 6509 high-speed switch. Net-
work bandwidth was not found to be a limiting factor in
any of our experiments. Fedora Core 4 is installed on all
machines, running Linux kernel 2.6.12.

Sixteen machines host a single replica each, providing
support up to f = 5, with each of the remaining 50 ma-
chines hosting two clients. We vary the number of logical
clients between 20 and 100 in each experiment, to obtain
maximum possible throughput. We need a large num-
ber of clients to fully load the system because we limit
clients to only one operation at a time.

Each experiment runs for 100,000 client operations of
burn-in time to allow performance to stabilize, before
recording data for the following 100,000 operations. Five

repeat runs were recorded for each data-point, with the
variance too small to be visible in our plots. We report
throughput; we observed batch size and protocol mes-
sage count in our experiments and these results match
closely to the analysis in Section 5.

We begin by evaluating performance when there is no
contention: we examine maximum throughput in HQ and
BFT, as well as their scalability as f grows. Throughput
is CPU-bound in all experiments, hence this figure re-
flects message processing expense and cryptographic op-
erations, along with kernel message handling overhead.

Figure 5 shows that the lower message count and
fewer communication phases in HQ is reflected in higher
throughput. The figure also shows significant benefits
for the two BFT optimizations; the reduction in message
size achieved by BFT-MACs, and the reduced communi-
cation and cryptographic processing costs in BFT-opt.

Throughput in HQ drops by 50% as f grows from 1
to 5, a consequence of the overhead of computing larger
authenticators in grants, along with receiving and vali-
dating larger certificates. The BFT variants show slightly
worse scalability, due to the quadratic number of proto-
col messages.

7000 . . .
HQ ——

| BFT-opt [1] -
5000 BFT-MACs [1]
" BFT[1] &3
2 5000 i
)
3 4000 |
<
(o2}
3 30000,
i<
[~
% 2000 |]
= =S
1000 - [S -
B il
0 : : I
1 2 8) ’

Failures tolerated (f)

Figure 5: Maximum non-batched write throughput under
varying f.

Based on our analysis, we expect Q/U to provide
somewhat less than twice the throughput of HQ at f = 1,
since it requires half the server message exchanges but
more processing per message owing to larger messages
and more MAC computations. We also expect it to scale
less well than HQ, since its messages and processing
grow more quickly with f than HQ’s.

The results in Figure 5 don’t tell the whole story. BFT
can batch requests: the primary collects messages up to
some bound, and then runs the protocol once per batch.
Figure 6 shows that batching greatly improves BFT per-
formance. The figure shows results for maximum batch
sizes of 2, 5, and 10; in each case client requests may ac-

cumulate for up to Sms at the primary, yielding observed
batch sizes very close to the maximum.

12000 : . .
HQ ——
BFT-opt [1]
10000 if: BFT-opt [2] g
G BFT-opt [5]
y BFT-opt [10
& 8000 | PALEOl .
5
Qo
S 6000 1 L
>
o
£ 4000 \\
x
ko T |
2000 |- y
0 1 1 1
1 2 3 4 5

Failures tolerated (f)

Figure 6: Effect of BFT batching on maximum write
throughput.

Figure 7 shows the performance of HQ for f = 1,...,5
in the presence of write contention; in the figure con-
tention factor is the fraction of writes executed on a
single shared object. The figure shows that HQ perfor-
mance degrades gracefully as contention increases. Per-
formance reduction flattens significantly for high rates
of write contention because multiple contending opera-
tions are ordered with a single round of BFT, achieving
a degree of write batching. For example, at f = 2 this
batching increases from an average of 3 operations or-
dered per round at contention factor 0.1 to 16 operations
at contention factor 1.

7000 T T T T
HQat f=1 —+—
| HQ at f=2 —*—
6000 HQatf=3 —*— |
HQ at f=4 —5—
5000 HQatf=5 —m—

Max Throughput (ops/s)

0 0.2 0.4 0.6 0.8 1
Contention factor

Figure 7: HQ throughput under increasing write con-
tention.

7 Related Work

Byzantine quorum systems were introduced by Malkhi
and Reiter [12]. The initial constructions were designed

to handle only read and (blind) write operations. These
were less powerful than state machine replication (im-
plemented by our protocols) where the outcome of an
operation can depend on the history of previously exe-
cuted operations. Byzantine quorum protocols were later
extended to support general object replication assuming
benign clients (e.g. [13, 3]), and subsequently to sup-
port Byzantine clients but for larger non-blocking quo-
rums [5]. Still more recent work showed how to handle
Byzantine clients while using only 3 f + 1 replicas [11].

Recently, Abd-El-Malek et al. [1] demonstrated for
the first time how to adapt a quorum protocol to imple-
ment state machine replication for multi-operation trans-
actions with Byzantine clients. This is achieved with
a combination of optimistic versioning and by having
client requests store a history of previous operations they
depend on, allowing the detection of conflicts in the or-
dering of operations (due to concurrency or slow repli-
cas) and the retention of the correct version.

Our proposal builds on this work but reduces the num-
ber of replicas from 5 f + 1 to 3f 4 1. Our protocol does
not require as many replicas owing to our mechanism
for detecting and recovering from conflicting orderings
of concurrent operations at different replicas. The Q/U
protocols use a one-phase algorithm for writes; Abd-El-
Malek et al show in their paper that their one-phase write
protocol cannot run with fewer than 5 f 41 replicas (with
quorums of size 4f + 1). We use a two-phase write pro-
tocol, allowing us to require only 3 f + 1 replicas. A fur-
ther difference of our work from Q/U is our use of BFT
to order contending writes; this hybrid approach resolves
contention much more efficiently than the approach used
in Q/U, which resorts to an exponential backoff of con-
current writers that may lead to a substantial performance
degradation.

In work done concurrently with that on Q/U, Martin
and Alvisi [14] discuss the tradeoff between number of
rounds and number of replicas for reaching agreement,
a building block that can be used to construct state ma-
chine replication. They prove that 5f + 1 replicas are
needed to ensure reaching agreement in two communi-
cation steps and they present a replica-based algorithm
that shows this lower bound is tight.

Earlier proposals for Byzantine fault tolerant state-
machine replication (e.g., Rampart [18] and BFT [2])
relied on inter-replica communication, instead of client-
controlled, quorum-based protocols, to serialize re-
quests. These protocols employ 3 f + 1 replicas, and have
quadratic communication costs in the normal case, since
each operation involves a series of rounds where each
replica sends a message to all remaining replicas, stat-
ing their agreement on an ordering that was proposed by
a primary replica. An important optimization decouples
the agreement from request execution [21] reducing the

number of the more expensive storage replicas to 2f + 1
but still retaining the quadratic communication costs.

8 Conclusions

This paper presents HQ, a new protocol for Byzantine-
fault-tolerant state-machine replication. HQ is a quorum
based protocol that is able to run arbitrary operations. It
reduces the required number of replicas from the 5f + 1
needed in earlier work (Q/U) to the minimum of 3f + 1
by using a two-phase instead of a one-phase write proto-
col.

Additionally we present a new way of handling con-
tention in quorum-based protocols: we use BFT. Thus
we propose a hybrid approach in which operations nor-
mally run optimistically, but a pessimistic approach is
used when there is contention. The hybrid approach can
be used broadly; for example it could be used in Q/U to
handle contention, where BFT would only need to run at
a predetermined subset of 3f + 1 replicas.

We also presented a new implementation of BFT that
was developed to scale with f.

Based on our analytic and performance results, we be-
lieve the following points are valid:

o In the region we studied (up to f = 5), if contention
is low and low latency is the main issue, then if it is
acceptable to use 51 + 1 replicas, Q/U is the best
choice else HQ is best since it outperforms BFT
with a batch size of 1.

e Otherwise, BFT is the best choice in this region: it
can handle high contention workloads, and it can
beat the throughput of both HQ and Q/U through its
use of batching.

e Outside of this region, we expect HQ will scale best.
Our results show that as f grows, HQ’s throughput
decreases more slowly than Q/U’s (because of the
latter’s larger messages and processing costs) and
BFT’s (where eventually batching cannot compen-
sate for the quadratic number of messages).

9 Acknowledgments

We thank the anonymous reviewers and our shepherd
Mema Roussopoulos for their valuable feedback and the
developers of Q/U for their cooperation. We also thank
the supporters of Emulab, which was absolutely crucial
to our ability to run experiments.

This research was supported by NSF ITR grant CNS-
0428107 and by T-Party, a joint program between MIT
and Quanta Computer Inc., Taiwan.

References

[1] ABD-EL-MALEK, M., GANGER, G. R., GOODSON, G. R,
REITER, M. K., AND WYLIE, J. J. Fault-scalable byzantine
fault-tolerant services. In SOSP '05: Proceedings of the twenti-
eth ACM symposium on Operating systems principles (New York,
NY, USA, 2005), ACM Press, pp. 59-74.

[2] CASTRO, M., AND LISKOV, B. Practical Byzantine Fault Tol-
erance and Proactive Recovery. ACM Transactions on Computer
Systems 20, 4 (Nov. 2002), 398-461.

[3] CHOCKLER, G., MALKHI, D., AND REITER, M. Backoff pro-
tocols for distributed mutual exclusion and ordering. In Proc.
of the IEEE International Conference on Distributed Computing
Systems (2001).

COWLING, J., MYERS, D., L1sk0ov, B., RODRIGUES, R., AND
SHRIRA, L. Hq replication: A hybrid quorum protocol for byzan-
tine fault tolerance. In Proceedings of the Seventh Symposium on
Operating Systems Design and Implementations (OSDI) (Seattle,
Washington, Nov. 2006).

[5] Fry, C., AND REITER, M. Nested objects in a byzantine

Quorum-replicated System. In Proc. of the IEEE Symposium on
Reliable Distributed Systems (2004).

HERLIHY, M. P., AND WING, J. M. Axioms for Concurrent Ob-
jects. In Conference Record of the 14th Annual ACM Symposium
on Principles of Programming Languages (1987).

[4

=

[6

=

[7

—

KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected Op-
eration in the Coda File System. In Thirteenth ACM Symposium
on Operating Systems Principles (Asilomar Conference Center,
Pacific Grove, CA., Oct. 1991), pp. 213-225.

[8] LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzan-
tine Generals Problem. ACM Transactions on Programming Lan-
guages and Systems 4, 3 (July 1982), 382—401.

[9] LAMPORT, L. L. The implementation of reliable distributed mul-
tiprocess systems. Computer Networks 2 (1978), 95-114.

[10] Liskov, B., GHEMAWAT, S., GRUBER, R., JOHNSON, P.,
SHRIRA, L., AND WILLIAMS, M. Replication in the Harp File
System. In Proceedings of the Thirteenth ACM Symposium on
Operating System Principles (Pacific Grove, California, 1991),
pp- 226-238.

[11] Liskov, B., AND RODRIGUES, R. Byzantine clients rendered
harmless. Tech. Rep. MIT-LCS-TR-994 and INESC-ID TR-10-
2005, July 2005.

[12] MALKHI, D., AND REITER, M. Byzantine Quorum Systems.
Journal of Distributed Computing 11, 4 (1998), 203-213.

[13] MALKHI, D., AND REITER, M. An Architecture for Survivable
Coordination in Large Distributed Systems. IEEE Transactions
on Knowledge and Data Engineering 12,2 (Apr. 2000), 187-202.

[14] MARTIN, J.-P., AND ALVISI, L. Fast byzantine consensus. In
International Conference on Dependable Systems and Networks
(2005), IEEE, pp. 402-411.

[15] MERKLE, R. C. A Digital Signature Based on a Conventional
Encryption Function. In Advances in Cryptology - Crypto’87,
C. Pomerance, Ed., no. 293 in Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1987, pp. 369-378.

[16] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY.
Fips 198: The keyed-hash message authentication code (hmac),
March 2002.

[17] NATIONAL INSTITUTE OF STANDARDS AND TECNOLOGY.
Fips 180-2: Secure hash standard, August 2002.

[18] REITER, M. The Rampart toolkit for building high-integrity ser-
vices. Theory and Practice in Distributed Systems (Lecture Notes
in Computer Science 938) (1995), 99-110.

[19] SCHNEIDER, F. B. Implementing fault-tolerant services using
the state machine approach: a tutorial. ACM Comput. Surv. 22, 4
(1990), 299-319.

[20] WHITE, B., LEPREAU, J., STOLLER, L., Ricci, R., GuU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. In Proc. of the Fifth Symposium
on Operating Systems Design and Implementation (Boston, MA,
Dec. 2002), USENIX Association, pp. 255-270.

[21] YIN, J., MARTIN, J., VENKATARAMANI, A., ALVISI, L., AND
DAHLIN, M. Separating agreement from execution for byzantine
fault tolerant services. In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (Oct. 2003).

A Liveness

This section presents arguments that our approach is live.
We assume that if a client keeps retransmitting a message
to a correct server, the reply to that message will eventu-
ally be received; we also assume the conditions for live-
ness of the BFT algorithm are met [2].

The argument for liveness is as follows:

e When there is no contention, client requests execute
in a number of phases that is bounded by a constant.
Each request for a given phase from a correct client
is well-formed, and, by construction of the HQ pro-
tocol, is replied to immediately by correct replicas
(unless the replica is frozen, which we discuss be-
low). Thus, the client eventually assembles a quo-
rum of replies, which allows it to move to the next
phase or conclude the operation.

e When a client needs to resolve contention to make
progress, the contention resolution process will
eventually conclude, since it consists of executing
a BFT operation, and, given the liveness properties
of BFT, eventually the operation is executed at good
replicas.

e If a client request did not get a reply because the
replica was frozen, then the replica was executing
a BFT operation to resolve contention. Using the
previous argument, eventually the operation is ex-
ecuted at good replicas, leading to the replica un-
freezing, and all pending requests being answered.

We note that while providing liveness, our system does
not offer any guarantees on fairness. It is possible under
pathological circumstances for a given writer to be in-
finitely bypassed by competing clients. This is a char-
acteristic of quorum-based approaches, as opposed to
primary-driven agreement. In practice we ensure that
competing clients get serviced whenever contention is
detected and resolved using BFT.

B Full Contention Resolution Protocol

This section follows from Section 4.2 and describes our
protocol for doing contention resolution when we use au-
thenticators in our base protocol. Note that we continue
to use signatures when performing contention resolution.

The protocol starts when one or more replicas receives
a valid RESOLVE request. These replicas send (START,
conflictC, ops, currentC, grantTS, vs),, messages to the
primary (and to all replicas if they don’t receive the cor-
responding upcall in some time period). Here vs is the
current viewstamp at the replica (which is recorded as
another component of replica state); we need this addi-
tional argument when using authenticators because it is
possible that the viewstamp in currentC' is smaller than
the most recent viewstamp known at the replica. (When
using signatures, at least one request will be executed at a
timestamp containing the new viewstamp as part of run-
ning conflict resolution, but this may not happen when
using authenticators.)

The primary collects these messages and checks them
for validity. In particular it discards any START message
containing a currentC or grantT'S whose request is not
present in ops.

Then the primary processes the messages and runs
BFT as discussed below.

Step 1. The first problem we need to solve is that it’s
possible for START messages from different replicas to
propose current certificates for the same timestamp but
different requests. We say that such proposals conflict.
Conflicts can happen in two ways. The first is when some
replica is behind with respect to the running of BFT. In
this case the viewstamp in its start.currentC will be
out of date; the primary discards such a START message,
and informs the replica that it needs to move to the new
view.

Thus the only case of concern is the second one, which
occurs when one of the replicas is lying. This was not a
problem using when using signatures, since the signa-
tures themselves were sufficient in indicating an invalid
certificate. When using authenticators however, we have
no guarantee that an authenticator appearing valid to a
given replica will appear valid for others, and hence can-
not rely on such checks.

Therefore we use an alternative technique. As in our
base protocol, the primary collects all START messages
into start@, but it also collects non-conflicting messages
into a set startQs,,. Each newly received message is
checked to see if it conflicts with some message already
in startQs.p. If there is no conflict, it adds the new
message to startQs,,. Otherwise, it doesn’t add the
new message and also removes the existing conflicting
message from startQ,p; if the new message conflicts

with several messages already in start(Q sy, one of them
is selected for removal deterministically, e.g., based on
replica id. This process is guaranteed to remove at least
one START message from a faulty replica.

This step terminates when |startQqu,| +k = 2f + 1,
where k = |startQ — startQsyp|/2, the number of con-
flicting pairs. At this point start(s,; contains at least
f + 1 entries from honest replicas and there are no con-
flicting proposals for current certificates among the en-
tries in startQ squp

Step 2. The primary now has a collection of at least
2f + 1 START messages in start@. If the latest certifi-
cate was formed from startQ).grantT'S or proposed by
at least f + 1 replicas, the primary can immediately run
BFT as discussed in Section 3.3.

Otherwise, it isn’t clear which certificate is the latest,
even considering just the certifications in start@ s, be-
cause it’s possible that the certificate with the latest time-
stamp was proposed by a liar. To sort this out, the repli-
cas carry out the following protocol.

1. The primary p sends a (CHECK, startQ),, message
to all the replicas. This message contains the START
messages in the order the primary processed them
and therefore each replica will be able to compute
start@Qsyp using the same computation as the pri-

mary.

2. Each replica r computes startQsyp. Then
it chooses all certificates C from startQsyp
with timestamps in the range [currentC.ts —
1, currentC'.ts+ 1], encompassing the cases where
it is behind, current, or ahead with an inconsistent
state, with the following additional constraints:

o If Cits = backupC.ts, then C.h =
backupC.h, i.e., both certificates identify the
same request.

e Similarly, if C.ts = currentC.ts then C.h =
currentC.h.

o If C.ts = currentC.ts + 1, then either C' is
valid for the replica or the replica has C’s re-
quest in its ops — curr, where curr is the re-
quest indicated in currentC (recall that ops
contains the new requests plus the one exe-
cuted to reach currentC).

Thus at this point the replica has between zero and
three candidate certificates.

3. Each replica creates votes for all candidates. A vote
is a pair (s, h) where h is the hash of the request
at timestamp ¢s — 1; note that this implies that each
replica must retain an additional old certificate for

the request at currentC.ts—2 so that it can vote for
a candidate at currentC.ts — 1. Then if it has any
votes to send, it sends (OK, V] h.),,. to all replicas,
where V is the collection of votes and h. is a hash
of the CHECK message.

4. If the candidates include a certificate for
currentC.ts + 1 and that certificate isn’t valid for
the replica, it is removed from the set of candidates.

5. If the replica has a nonempty set of candidates,
it waits for f 4+ 1 matching OK messages for the
timestamp of the latest candidate certificate or a
later one. Two OK messages match at a time-
stamp ¢ if each contains an identical vote for that
timestamp. When it has the votes, it sends an
(ACCEPT, O, t, h.),,. to the primary, where O con-
tains the collection of supporting OK messages for
timestamp ¢. If the set of candidates is empty, the
replica doesn’t wait for votes; instead it immedi-
ately sends an ACCEPT message, but in this case O
is empty.

6. The primary waits for a quorum of valid ACCEPT
messages, all containing an k. that matches the hash
of the CHECK message it sent earlier. Then it calls
BFT to run a CHECKEDRESOLVE operation, with
start@ and the collection of ACCEPT messages as
arguments. Again the entries in start() are in the
order it processed them.

Step 3. The replicas process the upcall from BFT as
described in Section 3.3, except that in the case of a
CHECKEDRESOLVE operation they use the ACCEPT mes-
sages to determine the latest certificate C": this is the cer-
tificate in start@g,p that contains the largest timestamp
mentioned in one of the ACCEPT messages that contains
a nonempty O.

If the replica is out of date, it must first perform state
transfer to obtain the missing requests. If it is process-
ing a RESOLVE upcall, it fetches state up to C'.ts — 1 as
discussed in Section 3.3. However, if it is processing a
CHECKEDRESOLVE upcall, it uses the extra argument to
decide what to do. In this case, the ACCEPT message for
C identifies the operation that should run at C'.ts — 1. If
this operation is in start@.ops, the replica requests state
transfer for requests up to C.ts — 2; otherwise it requests
state transfer for requests up to C'.ts — 1.

After bringing itself up to date, the replica forms the
set L of additional operations to be executed, but it adds
an operation to L only if the operation appears at least
f + 1 times in startQ).ops.

B.1 Correctness

In this section we discuss the safety and liveness of the
protocol given previously. As in Section 3.5 and Ap-
pendix A we assume that if replicas repeatedly send mes-
sages, they will eventually be delivered; we also assume
there are at most f faulty replicas.

We begin by stating a few lemmas about Step 1.

e Lemma 1. startQs,, contains no conflicting pro-
posals. This is obvious, by construction.

e Lemma 2. The set startQrejects = Start@ —
startQqyp contains at least k = |startQprejects|/2
messages from faulty replicas. This follows because
START messages are “added” to startQejects in
pairs, and this happens only when the two messages
conflict. Honest replicas will never produce con-
flicting certificates, and therefore at least one of the
two replicas that sent the pair of conflicting mes-
sages is a liar.

e Lemma 3. The set startQrcjects contains at most
k messages from honest replicas. This follows di-
rectly from Lemma 2.

e Lemma 4. When Step 1 terminates, start(s, con-
tains at least f + 1 messages from honest replicas.
This can be shown as follows. When Step 1 ter-
minates |startQsuw| = 2f +1—k = (f +1) +
(f — k). From Lemma 2 we know that the primary
has processed at least k messages from faulty repli-
cas. If £ = f, i.e., all messages from liars are in
startQrejects, then all messages in startQ s, are
from honest replicas and there are exactly f + 1
of them. Otherwise, startQs,, might contain up
to f — k messages from liars, but it still contains
an additional f + 1 messages from honest nodes.
Therefore start@s,, contains at least f + 1 mes-
sages from non-faulty replicas.

B.1.1 Liveness

There are two places where we might have additional
concerns about liveness (over those addressed in Ap-
pendix A) — the termination of Steps 1 and 2.

Step 1 terminates because whenever the primary waits
for another START message we are certain there is at least
one more non-faulty replica to send that message. The
termination condition for this step is |startQsus| + k =
2f 4+ 1. By Lemma 3 we know that the maximum num-
ber of honest nodes with entries in startQejects is no
greater that k. Therefore the number of honest replicas
heard from so far is no more than |startQ syp|+k, which,
if we haven’t yet reached termination, is less than 2 f + 1.
Therefore it is safe for the primary to wait for another

message since there is at least one honest replica it hasn’t
heard from yet.

Step 2 terminates because all honest nodes will send
valid accept messages and therefore the primary will re-
ceive the 2f + 1 valid ACCEPT messages needed for ter-
mination. If the honest replica has no candidate certifi-
cate where it is waiting for votes, it sends the ACCEPT
message immediately. The replicas that wait for votes do
so only for certificates that appear valid to them. This
implies that the certificate contains grants from at least
f + 1 honest replicas and those replicas will vote for ei-
ther that certificate or a later one. Therefore the replica
that is waiting for votes will receive them and be able to
send its ACCEPT message to the primary.

Note that it is important that replicas vote for several
certificates; this handles the case where some of the hon-
est replicas that processed the last committed request are
ahead of the others because they are processing a write
phase 2 for a later request. It is also important that repli-
cas accept matching votes for a later certificate; this han-
dles the case of an honest replica that is behind and is
waiting for votes for a certificate with a timestamp ear-
lier than that of the most recently committed request.

B.1.2 Safety
The correctness condition we must satisfy has two parts:

o Commitment. The latest certificate, C, selected by
the protocol must be such that C.ts > t, where t
is the timestamp of the most recently committed re-
quest. This way we ensure that all committed re-
quests retain their place in the order.

e Validity. All requests executed at timestamps
greater than ¢ must be valid requests, i.e., ones re-
quested by a client.

Commitment. We satisfy the commitment condition
because certificates from requests in startQs,; will in-
clude a late enough certificate, and furthermore, the se-
lection process in Step 2 will select a late enough time-
stamp.

In Step 1 the concern is that as many as half of the
messages in startQrejects Might be from honest repli-
cas and as a result we might not have a message from an
honest replica that knows about the most recently com-
mitted request in startQs,,. However, by Lemma 4 we
know that when Step 1 terminates, startQg,, contains
at least f 4+ 1 messages from honest replicas. Therefore
it has a non-empty intersection with the set of at least
f + 1 honest replicas that processed the write phase 2
message for the most recently committed request. Since
that replica is honest, it will propose a certificate at least
as late as the most recently committed request.

In Step 2, the honest replicas that know about the
most recently committed request will succeed in collect-
ing votes for it or for a higher request. Furthermore the
primary will wait to receive an ACCEPT message from
at least one of them, since there are f + 1 of them and
the primary needs to receive 2f + 1 ACCEPT messages.
Therefore the latest certificate C' will be sufficiently re-
cent.

Validity. The request in the latest certificate C' is cer-
tain to be valid because either C' was proposed by at least
f + 1 replicas in their START messages, or it was built
from the grants in the START messages, or it was se-
lected based on an ACCEPT message containing f + 1
valid votes for it. In all these cases we can be sure that
at least one honest replica vouches for C, which is suffi-
cient to guarantee that the request in C'is valid.

Furthermore all requests assigned timestamps greater
than C'ts are valid since they must appear at least f + 1
times in ops. So the only concern is for requests assigned
timestamps less than C'.ts. Furthermore there is no con-
cern for requests with timestamps less than or equal to ¢,
since these have already committed. So we are only con-
cerned with requests assigned timestamps that are greater
than ¢ and less than C.ts.

In the case where C' was selected without considering
ACCEPT messages, there are no such requests: in this
case either C.ts =tor C.its =t + 1.

However, if C'is selected by considering ACCEPT mes-
sages, it is possible that C'.ts > ¢ 4 1. In this case C is
invalid and has been proposed by a faulty replica. How-
ever, that replica (or some other faulty replica) has suc-
ceeded in getting at least one non-faulty replica to vote
for C'. This implies two things. First, the request in C'
is valid, since a non-faulty replica will vote for it only in
this case. Second, C.ts < t + 2 because the current cer-
tificate at a non-faulty replica cannot be more than one
ahead of the most recently committed request and a non-
faulty replica will not vote for a certificate that is more
than one ahead of its currentC.

When C.ts = t + 2, the request selected to run at
t+ 1 is the one whose hash is included in the votes for C'.
Since one of these votes comes from an honest replica,
we can be sure that the request is valid.

