Lockup of a Client Object Cache and How to Avoid It
(Student Paper)

Mark Day*
mday@lcs.mit.edu
MIT Laboratory for Computer Science

545 Technology Square
Cambridge, MA 02139, USA

Abstract

I present the problem of client object cache lockup
in a distributed object-oriented database system
where storage is recovered by garbage collection. If
garbage collection is augmented with the ability to
discard reachable unmodified versions of persistent ob-
jects, cache lockup is greatly reduced. I outline some
remaining questions about this technique for manag-
ing an object cache.

1 Introduction

In a distributed object-oriented database system,
server machines store persistent objects shared by ap-
plications running on client machines. When an ap-
plication invokes an operation on a persistent object,
that operation must run on either the server or client.
I consider the case where objects are moved or copied
to the client for at least the duration of the client
transaction. A number of existing object-oriented
databases work partially or entirely in this mode of
executing operations on the client machine: examples

are 02 [1], GemStone [2, 9], and Orion [7].

2 Complicating factors

The Thor system([8] includes three features that im-
prove performance but complicate cache management:
inter-transaction caching, swizzling, and object groups
as the unit of transfer.

*Telephone: +1 (617) 253-6015 Fax: +1 (617) 258-8682
This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by
the Office of Naval Research under contract N00014-91-J-4136
and in part by the National Science Foundation under Grant
CCR-8822158.

2.1 Inter-transaction caching

Some systems discard all objects in the cache after a
commit. This approach is simple and effective if trans-
actions rarely share objects. However, in applications
such as computer-aided design (CAD), a transaction
on a large, complex data structure is often followed by
another transaction on the same data structure. Inter-
transaction caching can improve performance signifi-
cantly for these applications.

2.2 Swizzling

Objects at the server refer to each other by names
that are unrelated to their addresses in the client
cache. A simple but inefficient way to implement refer-
ences in the client cache is to maintain a table mapping
server names to client addresses. To follow an inter-
object reference, the system looks up the name of the
referenced object and finds the corresponding address.
For many workloads, it is more efficient to swizzle the
inter-object reference at the client, actually mutating
a cached copy of an object so that each server name
is replaced by its corresponding client address[11].

2.3 Transferring object groups, not pages

In many systems, the unit transferred from server
to client is a page. The client then manages a cache
of pages much like a paged virtual memory, treating
the server as a backing store.

Some complications arise from transferring pages
because the client is working in terms of transactions
on objects. One such complication is that a dirty page
evicted from the client cache must not overwrite its
old version at the server until the client transaction
commits.

Another complication is that a typical page con-
tains many objects. If concurrency control is done



at the page level, there can be unnecessary conflicts
or aborts due to false sharing. These conflicts and
aborts may be avoided by more complicated concur-
rency control schemes,; but only at a significant cost
in complexity.

Yet another problem is that the use of virtual mem-
ory addresses as references in a page-based scheme can
make it more difficult to manage client memory. In
particular, it is useful to compact the reachable objects
so as to recover space that was occupied by unreach-
able objects or objects that have moved, but this sort
of compaction is difficult if objects are fixed in pages.

Finally, the need to cluster objects statically into
pages limits the flexibility of prefetching, and may re-
duce performance accordingly[4].

3 Cache lockup and how to avoid it

Because Thor fetches object groups, swizzles refer-
ences, and caches objects across transaction bound-
aries, it needs a different approach to cache manage-
ment.

3.1 Garbage collection

Garbage collection is one obvious mechanism for
managing the client object cache. A garbage collector
treats the client application’s variables as roots and re-
covers storage that is not reachable from those roots.
However, garbage collection is not sufficient. If the
cache fills with reachable objects, a garbage collector
cannot recover any space. This condition can arise
without warning: there is typically little or no degra-
dation of performance before such a problem stops the
computation, a condition I call “cache lockup”. In a
simulation of Thor using OOT traversal 1 on a small
OO7 database[5], caches smaller than 1571 KBytes
locked up when using only garbage collection.

3.2 Shrinking to surrogates

Another way to recover space is to shrink an un-
modified persistent object. This is roughly analogous
to evicting a clean page, but because of swizzling there
may be direct memory pointers to the storage previ-
ously occupied by the object. So when an object is
shrunk, it is replaced by a surrogate, a small data
structure containing only the information needed to
refetch the object if needed (cf. leaves in LOOM][6],
forwardersin Mneme[10]). The surrogate ensures that
any attempt to use a shrunk object causes the object
to be refetched.

When a garbage collector fails to reclaim enough
space, it can shrink some objects and then proceed.
The combination of shrinking and garbage collection
is quite robust. In simulations of Thor using garbage
collection and shrinking, I have demonstrated that
computations can proceed without cache lockup with
larger and larger workloads or smaller and smaller
caches until performance has greatly degraded due to
cache misses and other cache-related overheads|[3].

Surrogates are not strictly necessary, since the
garbage collector can fix up the relevant pointers; how-
ever, surrogates simplify the task of the garbage col-
lector. In addition, surrogates allow invalidation: if a
cached object is modified at the server by a commit-
ted transaction, the system can avoid an unnecessary
abort by shrinking the outdated cached copy of that
object, so that any computation touching that object
must fetch the new version from the server.

4 Finding a Good Policy

There are a number of choices involved in combin-
ing garbage collection with shrinking:

e when does the garbage collector decide to shrink
some objects?

e how many objects should be shrunk?

e how are the victims chosen for shrinking (e.g.
LRU, random)?

As long as the cache is managed with both garbage
collection and shrinking, it is relatively easy to avoid
cache lockup; the avoidance of cache lockup does not
seem to be very sensitive to the details of garbage
collector or shrinking policy. However, two differ-
ent implementations may have very different perfor-
mance: both may complete a given computation with-
out lockup, but one may run 10-100 times slower than
the other. I am currently studying a number of differ-
ent implementation techniques with a number of dif-
ferent simulated applications to understand what will
make a good general-purpose combination of shrinking
and garbage collection.

Acknowledgement

Thanks to Barbara Liskov for useful criticism of
this note.



References

(1]

Francois Bancilhon, Claude Delobel, and Paris
Kanellakis, editors. Building an Object-Oriented
Database: The Story of Oy. Morgan Kaufmann,
1992.

Paul Butterworth, Allen Otis, and Jacob Stein.
The GemStone object database management sys-
tem. Communications of the ACM, 34(10):64-77,
October 1991.

Mark Day. Client cache management in a dis-
tributed object system. PhD Thesis, MIT Depart-
ment of Electrical Engineering and Computer Sci-
ence (forthcoming).

Mark Day. Object groups may be better than
pages. 4th Workshop on Workstation Operating
Systems, Napa, California, October 1993.

Michael Carey, David J. DeWitt, and Jeffrey F.
Naughton. The OO7 Benchmark. Technical Re-
port, Department of Computer Science, University

of Wisconsin, April 1993.

Ted Kaehler. Virtual memory on a narrow ma-
chine for an object-oriented language. In Object-
Oriented Programming Systems, Languages, and

Applications (OOPSLA), pages 87-106, 1986.

Won Kim, Nat Ballou, Hong-Tai Chou, Jorge F.
Garza, Darrell Woelk, and Jay Banerjee. Inte-
grating an object-oriented programming system
with a database system. In Object-Oriented Pro-
gramming Systems, Languages, and Applications

(OOPSLA), pages 142-152, 1988.

Barbara Liskov, Mark Day, and Liuba Shrira. Dis-
tributed object management in Thor. In M. Tamer
Ozsu, Umesh Dayal, and Patrick Valduriez, ed-
itors, Distributed Object Management. Morgan
Kaufmann, San Mateo, California, 1993.

David Maier, Jacob Stein, Allen Otis, and Alan
Purdy. Development of an object-oriented DBMS.
In Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 472
482, 1986.

[10] J. Eliot B. Moss. Design of the Mneme persistent

object store. ACM Transactions on Information

Systems, 8(2):103-139, April 1990.

[11] J. E. B. Moss.

Working with persistent ob-
jects: To swizzle or not to swizzle. Technical Re-
port 90-38, COINS, University of Massachusetts -
Ambherst, 1990.



