How to Scale Transactional Storage Systems
Liuba Shrira, Barbara Liskov, Miguel Castro and Atul Adya

Laboratory for Computer Science, MIT
Cambridge, MA 02139

Abstract

Applications of the future will need to support large numbers of clients and will require scalable
storage systems that allow state to be shared reliably. Recent research in distributed file systems provides
technology that increases the scalability of storage systems. But file systems only support sharing with
weak consistency guarantees and can not support applications that require transactional consistency.
The challenge is how to provide scalable storage systems that support transactional applications.

We are developing technology for scalable transactional storage systems. Our approach combines
scalable caching and coherence techniques developed in serverless file systems and DSM systems, with
recovery techniques developed in traditional databases. This position paper describes the design ra-
tionale for split caching, a new scalable memory management technique for network-based transactional
object storage systems, and fragment reconstruction, a new coherence protocol that supports fine-grained
sharing.

1 Introduction

The distributed applications of tomorrow will need to provide reliable service to a large number of users
and manipulate complex user-defined data objects. Therefore, these applications will require large-scale
distributed storage systems that provide scalable performance, high reliability, and support user-defined
objects.

An important design challenge in such systems is avoiding the increasingly formidable server disk ac-
cess bottleneck, a major performance impediment as systems scale to support many clients. Cooperative
caching avoids disk access by taking advantage of emerging high speed local area networks to provide
remote access to huge primary memories available in workstations. However, current cooperative caching
techniques only work for file systems [5] and virtual memory systems [6], and do not provide support
for transactions and fine-grained sharing (i.e., sharing of objects that are smaller than pages). In this
paper we describe a new transactional storage system architecture, split caching, that adapts cooperative
caching in a novel way to provide this support; our scheme achieves this goal in a way that avoids the
problem of false sharing.

We assume a conventional client/server architecture: applications run at client machines and make
use of objects stored at servers that provide persistent, highly-available storage. Client machines cache
copies of persistent objects and make them available to applications, which run transactions that can
access objects belonging to several different servers. Transaction commits are handled at servers (using a
two-phase commit protocol if the transaction used objects from more than one server); when a transaction
commits, its modifications are recorded persistently and become visible to other transactions. Note that
the need to support transactions makes a “serverless” architecture [14] undesirable because the cost of
distributed commit protocols increases with the number of participating servers.

This research was supported in part by the Advanced Research Projects Agency of the Department of Defense, monitored by
the Office of Naval Research under contract N00014-91-J-4136. M. Castro is supported by a PRAXIS XXI fellowship.



Traditionally, server caches are used both to avoid disk reads and optimize disk updates. This
organization is not scalable because the server cache becomes less effective in avoiding disk reads due
to decreased locality in the server cache when there are many clients. Cooperative caching addresses
this problem by letting clients fetch data from other client caches and by managing the aggregated
client caches cooperatively. However, cooperative caching techniques [5] as used in file systems are not
appropriate for transactional systems. In particular, caching modified data in client caches to optimize
disk updates as in XF'S [14] is not satisfactory since modified data is vulnerable to client machine crashes.

Split caching decouples the optimization of disk reads and disk updates, providing a new way of
structuring the cooperative caches in transactional storage systems. Clients fetch pages from other
clients’ caches to avoid disk reads. Servers cache only new committed versions of recently modified
objects in a large object cache called the mcache. The mcache is recoverable and therefore modified
objects survive server crashes. The mcache allows disk updates to be performed more efficiently [13, 8].
However, when objects need to be moved from the mcache to the database on disk, it is necessary to
first perform an installation read [13], or iread, to obtain the containing pages, since the mcache contains
the modified objects but not the containing pages. Installation reads form a significant part of the disk
load in the mcache architecture. Split caching avoids installation reads by fetching the containing pages
from client caches.

Split caching relies on a cache coherence protocol called fragment reconstruction that avoids the
penalties of false sharing. The protocol works in the presence of concurrency control techniques that
support fine-grained sharing (e.g., adaptive call-back locking [3] or the optimistic approach used in
Thor [1]); such techniques are desirable because they avoid conflicts due to false sharing. In such systems,
when a transaction commits new versions of some objects, this may cause pages in other client caches
to become fragments, i.e., pages containing stale copies of the objects modified by those transactions.
Earlier research indicates that bringing such pages up to date by propagating the new object versions at
commit time is not efficient [4]. Therefore, we instead invalidate those stale copies, and use fragment
reconstruction to bring those pages up to date using the fragment and the information in the mcache.

Our work has been done in the context of Thor [2]. Thor supports object-based sharing and uses
an mcache architecture to optimize updates. We describe a revised Thor design that incorporates split
caching and fragment reconstruction. Although the design is based on Thor’s optimistic concurrency
control mechanism, it can easily be adapted to a system with a different concurrency control mechanism,
such as adaptive call-back locking.

The paper is organized as follows. Section 2 describes the Thor architecture. The new split caching
architecture and page reconstruction protocol are described in Section 3. We conclude in Section 4.

2 Thor Architecture

Our work is done in the context of the Thor object-oriented database system [2]. Thor has a distributed
client/server architecture. Persistent objects are stored on disk at the servers. Application code runs
at clients. Applications interact with Thor within atomic transactions that read and write persistent
objects. Below, we give a brief overview of the Thor architecture, focusing on the parts that are important
for our work. In particular, we describe the client—server protocol and the organization of disk storage
management.

2.1 Client/Server Protocol

Each client has a cache that is used to store recently accessed objects. If the application requests an
object that is not present in the client cache, the client sends a fetch request to the server. The server
responds with a copy of the requested object. Clients cache objects across transaction boundaries.
Thor uses an optimistic concurrency control and cache consistency protocol based on loosely synchro-
nized clocks and invalidation messages [1]. The Thor transactional consistency protocol has a number of
interesting features: it uses timestamps to obtain a global ordering for transactions, and also to discard
concurrency control information without causing aborts; it uses page granularity directories that keep
track of cached pages and, in addition, keep track of objects on those pages that have been modified
recently; it piggybacks cache invalidation information on messages already being exchanged between



servers and clients. Simulation studies show that this scheme outperforms the best pessimistic scheme
(adaptive callback locking [3]) on almost all workloads [9].

2.2 Server Organization

A server stores persistent objects and a stable transaction log on disk; it also has some volatile memory.
The disk is organized as a collection of large pages that contain many objects. These pages are the
unit of disk transer. The stable log holds commit information and object modifications for committed
transactions. The server memory contains a modified object cache (the mcache) and a page cache that
holds recently accessed pages. The mcache holds recently modified objects that have not yet been written
to disk. As transactions commit, modifications are written to the log and also inserted in the mcache.
To satisfy a fetch request, the server first checks the mcache, since it may contain the latest version of
an object.

The mcache-based server architecture improves the efficiency of disk updates for small objects [13, 8].
It avoids the cost of synchronous commit time installation reads that obtain pages from disk in order
to install the modifications on their containing pages. Studies show that installation reads performed at
commit time can reduce the scalability of the server significantly [13, 15]. Instead, installation reads are
performed asynchronously by a background thread that moves modified objects from the mcache to the
disk using a read-modify-write cycle. First, the modified page is read from disk, if necessary. Then the
system installs the modifications in the page and writes the result to disk. Once modifications have been
written to disk, they are removed from the mcache and the transaction log, thus freeing up space for
future transactions. If the server crashes, the mcache is reconstructed at recovery by scanning the log.

The mcache architecture reduces the number of disk update operations. It stores modifications in a
very compact form, since only the modified objects are stored. This allows the system to delay writing
modifications to the database longer than if the pages containing the objects were stored. Therefore, it
increases write absorption: the mcache can accumulate many modifications to a page before an object in
that page is installed on disk. This reduces the number of disk installation reads and also reduces the
number of disk writes since the system can write all these modifications in a single disk operation while
preserving the clustering that enables efficient disk reads.

Performance studies show that for most workloads the mcache architecture outperforms other archi-
tectures [13, 8], including conventional architectures in which the server stores modified pages, and the
clients ship entire pages to the server at commit.

3 The Split Caching Architecture

The new caching architecture is based on the Thor architecture described in the previous section, except
that clients fetch and evict pages instead of objects, and the servers no longer have a page cache; they
only have the mcache. The new architecture allows clients to fetch pages from the caches of other clients
and allows servers to avoid installation reads by taking advantage of pages in client caches.

The new architecture assumes the following environment. We assume that clients can communicate
faster with each other than they can access the disk. This is true for fast switched local area networks
like ATM and modern disks. We also assume that the users of client machines are willing to cooperate.
Furthermore, we assume that clients are workstations with large primary memory. This is a reasonable
assumption both because of current workstation technology trends, and because clients must have enough
primary memory to cache their working set; otherwise, they will not perform well. Servers also have
primary memory, but the aggregate memory at the clients is significantly larger than the server memory.

The new architecture is based on the following observations:

1. Earlier research has shown that when there is a large number of clients with caches, and when
clients are sharing a large database whose size is much larger than the server memory, the server
cache is relatively ineffective [11]. It is unlikely to satisfy client requests with pages fetched earlier
for that client since they are already present in that client’s cache. Furthermore, it is unlikely to
satisfy client requests with pages fetched for another client because the probability that the needed
information is in the server cache is small. The aggregate memory at the clients will do at least as
well as the server cache, and is likely to do better because it is much bigger than the server cache.



This observation has motivated the work on cooperative caching in the xF'S file system [5] and in
traditional client/server databases [7].

2. Work on the mcache has shown that for most workloads, performance improves as memory is shifted
from the server cache to the mcache [8]. This result is consistent with the first observation: since
the server page cache is not very effective, it makes sense to shift the memory to the mcache (where
it can be used to delay installing changes in the database).

3. Installation reads form a significant part of server disk load when the aggregate client memory
exceeds the server cache; by the time the server needs to propagate the modification to the disk,
it is unlikely to find the containing page in the server cache and needs an installation read. If the
server cache is highly ineffective, the disk load due to the installation reads equals the the disk load
due to writes.

4. Fine-grained concurrency control is much better than coarse-grained concurrency control because
it avoids the problem of false sharing.

The first three points together with our environment assumptions lead to the split caching idea. Since
the server page cache is not effective in avoiding disk reads, the server does not have a page cache; it
only has a large mcache. This optimizes server disk writes. Clients fetch and evict pages and these pages
are used for fetches and installation reads. Like other cooperative caching schemes, split caching allows
the clients to fetch pages from other client caches. In addition, like the hybrid caching scheme [12], split
caching allows the servers to avoid installation reads by taking advantage of pages in the client cache.
In contrast to hybrid caching, split caching fetches pages at installation time, rather then commit time,
which is more efficient when pages are updated repeatedly. This avoids disk reads ar the server.

The fourth point motivates the need for fine-grained sharing. Our architecture supports fine-grained
sharing by providing a transactional caching and coherence protocol that works with Thor’s object-based
concurrency control scheme. When a client modifies a set of objects and commits its transaction at a
server, it causes copies of these objects in other client caches to be invalidated. The server uses the
directory information to determine which clients need to be informed and sends invalidation messages to
these clients. When a client receives an invalidation message for an object x, it marks x as invalid (if the
current transaction has used x, the transaction is aborted). These invalid objects in a client’s page are
termed holes and a page with holes is called a fragment. Fragments support fine-grain sharing and avoid
the penalties of false sharing. They avoid unnecessary synchronization conflicts; if the client is required
to invalidate the entire page on which x was located, it may have to abort unnecessarily (if the client
had used other objects on that page). Also, fragments allow retaining useful objects in the cache; if the
client discards entire invalidated page, it may discard frequently used objects that happen to reside on
the page.

To use fragments in split caching, we must ensure that applying updates to a fragment obtained
from a client cache results in an up-to-date copy of the corresponding page; otherwise, inconsistent pages
may be written to disk. This condition may be violated if the fragment is missing updates that have
already been installed on disk and are no longer in the mcache. Our cache coherence protocol, fragment
reconstruction, guarantees that such situations do not occur, i.e., whenever a page is reconstructed using
a fragment and the mcache, the protocol ensures that the page is up-to-date.

To ensure correctness, the cache coherence protocol has to be coordinated with the mcache. As
mentioned, the server maintains directories that record information about what pages are cached at each
client. For each page it records a status: complete, reconstructible, or unreconstructible. A complete
page at a client has the latest versions of all its objects. A reconstructible page may contain old versions
of some objects, but new versions of these objects are stored in the mcache. An unreconstructible page
may contain old versions of some objects for which the mcache does not contain new versions.

The fragment reconstruction protocol maintains the changing page status as clients and servers fetch
pages, transactions commit, and updates are propagated to disk. It uses page status to decide if a
cached page can be used to satisfy fetches. The following sections discuss the actions of the fragment
reconstruction protocol.

3.1 Redirecting Fetches

The server redirects fetches to client caches to reduce the number of disk accesses. When there is a
miss in client A’s cache, A requests the page of the missing object from the server. The server checks



its directories to determine whether the page is present in the cache of another client. It redirects the
request to another client B only if B’s directory information indicates that B’s page is either complete
or reconstructible. In either case, the server asks B to send the page to client A. If the page is marked
as reconstructible, it also sends the updates in the mcache for that page to client A (this client must
wait for the updates from the server and the fragment from client B before it can proceed). If the page
cannot be obtained from a client cache, the server reads it from disk in the usual way. The server then
marks the page as complete in the directory for client A.

If the requested page has uncommitted modifications, client B does not send them to client A; it
sends only the latest committed versions of objects. To do this, a client makes a copy of an object the
first time it is modified in a transaction. These copies are discarded when the transaction commits or
possibly due to a cache management policy decision. If client B receives a request for a page and it does
not have the copy of the committed state for one of the objects in the page, it replies to the server saying
that the page is unavailable. The server will then obtain the page from disk or another client and send
it to A.

Client B may be unable to satisfy the fetch request if it has discarded the page. In this case, it replies
to the server, which marks the page as absent from client B’s cache. To improve performance, a client
can inform the server when it evicts a page by piggybacking that information in its next message sent
to the server.

When the server commits a transaction for a client, this has no impact of the status of pages stored
at that client, but it can affect the status of pages at other clients, since they may become out-of-date for
some objects. The server checks to see whether any complete pages at other clients have been affected
by the transaction, i.e., whether the transaction has modified objects in a complete page at some other
client. All such pages are marked reconstructible.

3.2 Avoiding Installation Reads

The server fetches pages from clients to avoid installation disk reads. When the server wants to install
object modifications for page P from the mcache, it fetches page P from a client A if the directories
indicate that A has a complete or reconstructible version of the page. Otherwise, the server simply reads
the page from disk. The server installs the modifications and removes them from the mcache. It then
checks client directories to determine if any client has reconstructible copies of page P. Directory entries
of page P for all such clients are marked as unreconstructible. As a result, such pages will not be used
in future fetches or installation reads. Marking of these cached pages as unreconstructible is necessary
because after discarding the modifications from the mcache, the server can no longer bring the pages up
to date using the mcache.

3.3 Optimizations

Now we discuss some optimizations to the protocol. Our first optimization avoids pages becoming
unreconstructible; unreconstructible pages are not desirable because they can no longer be used in the
global cache and only benefit the client caching them. When a server decides to install object updates,
instead of just asking a client A for the fragment, it sends the mcache updates for the page to A.
The client installs the modifications to the page and sends back the complete page to the server. The
server then marks the page as complete at that client. This technique prevents a page from becoming
unreconstructible at client A. This optimization is similar to update propagation but is not exactly the
same. The server sends the mcache updates relatively rarely, e.g., the updates may be sent to a client
after many modifications to the same page have been absorbed in the mcache. Note that the server
need not update all the cached copies for the page; it just needs to ensure that there exists at least one
reconstructible page in the system.

Suppose that a client has a page fragment and needs an object that is missing from the page. The
client does not need to receive the whole page from another client. If the client informs the server that it
has the page, and the server determines that the page is reconstructible, the server can simply send the
updates in the mcache to the client and mark the page as complete. This optimization avoids a network
roundtrip delay of getting the page from another client.

Finally, it is possible to distinguish “degrees” of fragmentation. Suppose that a client A fetches page P
from a server (with some updates from the mcache); the server marks this page complete for client A. The



server now receives an update for object x on page P from another client and marks P as reconstructible
for client A. If client A now asks for page P, the server should send object x only (rather than all the
updates for P in the mcache). This optimization can be implemented by maintaining extra information in
the directory entries for each client. The server increments a counter whenever a transaction commits; in
a client’s directory entry, it stores the number of the latest transaction whose modifications are reflected
in the client’s cached copy. We rejected this scheme in favor of the one described here because our
scheme is simpler and requires less storage at servers. Furthermore, the extra information will probably
not have much impact on system performance: it may reduce the message size for fetch replies but does
not reduce the number of messages in the system.

4 Conclusions

This paper considers the challenge of providing scalable storage systems for transactional applications
and describes the new scalable transactional storage system architecture we are developing in the Thor
system. The new architecture is based on the split caching global memory management scheme, and the
transactional fragment reconstruction coherence protocol.

Split caching is of interest because it provides the first global memory management architecture for
distributed transactional object storage systems. Like cooperative caching in serverless file system [5],
split caching increases the scalability of the storage system by exploiting remote memory access. In
addition, the decoupled optimization of disk reads and disk writes in split caching architecture also
reflects transactional storage reliability requirements.

The fragment reconstruction coherence protocol is attractive because, like the log-based coherency
protocol of Feeley et.al, [10], it avoids the penalties of false sharing in a transactional object storage
system. However, the fragment reconstruction protocol supports storage systems with multiple servers
and cooperative caching. In addition, because the fragment reconstruction protocol is integrated with the
recoverable mcache, it can take advantage of lazy update propagation and absorption, which improves
performance when pages are updated repeatedly. Importantly, it works correctly even in the presence of
client failures.

Earlier work shows that cooperative caching is effective in improving the scalability of a storage
system, and that support for fine-grain sharing avoids the performance penalties of false sharing. Split
caching and fragment reconstruction integrate these two techniques in a new context of a transactional
storage system, and we hypothesize, should retain the performance benefits of both techniques. We
are currently implementing split caching and fragment reconstruction in Thor and exploring how they
interact with mcache management.

5 Acknowledgments

We gratefully acknowledge Maurice Herlihy for his comments on the paper.

References

. , R. , B. , . .
[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient Optimistic Concurrency Control Using Loosely
Synchronized Clocks. In Proceedings of ACM SIGMOD, May 1995.

[2] B.Liskov, A.Adya, M.Castro, M.Day, S.Ghemawat, R.Gruber, U.Maheshwari, A.Myers, and L.Shrira. Safe
and Efficient Sharing of Persistent Objects in Thor. In Proceedings of ACM SIGMOD, 1996.

[3] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-Grained Sharing in a Page Server OODBMS. In
Proceedings of ACM SIGMOD, 1994.

[4] Michael J. Carey, Michael J. Franklin, Miron Livny, and Eugene J. Shekita. Data caching tradeoffs in
client-server DBMS architectures. In Proceedings of the ACM SIGMOD, pages 357-366, 1991.

[5] M. Dahlin, R. Wang, T.Anderson, and D. Patterson. Cooperative Caching: Using Remote Client Memory
to Improve File System Performance. In Proceedings of OSDI, 1994.

[6] M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, and C. Thekkath. Implementing global memory
management in a workstation cluster. In Proceedings of SOSP, 1995.



(7]
(8]
(9]
(10]

11]

M. Franklin, M. Carey, and M. Livny. Global Memory Management in Client-Server DBMS Architectures.
In Proceedings of 18th VLDB Conf., 1992.

S. Ghemawat. The Modified Object Buffer: A Storage Management Technique for Object-Oriented Databases.
PhD thesis, MIT, 1995.

R. Gruber. Optimism vs. Locking: A Study of Concurrency Control for Client-Server Object-Oriented
Databases. PhD thesis, Forthcoming.

M.Feeley, J.Chase, V.Narasayya, and H.Levy. Integrating Coherency and Recoverability in Distributed
Systems. In Proceedings of OSDI, 1994.

D. Muntz and P. Honeyman. Multi-level Caching in Distributed File Systems or Your Cache ain’t nothin’
but trash. In Winter Useniz Technical Conference, 1992.

J. O’Toole and L. Shrira. Shared data management needs adaptive methods. In Proceedings of IEEE
Workshop on Hot Topics in Operating Systems, 1995.

James O’Toole and Liuba Shrira. Opportunistic Log: Efficient Installation Reads in a Reliable Object Server.
In Proceedings of OSDI, 1994.

T.Anderson, M. Dahlin, J. Neefe, D. Patterson, and R. Wang. Serverless Network File Systems Performance.
ACM Transactions on Computer Systems, 14(1), 1996.

Seth J. White and David J. DeWitt. Implementing Crash recovery in Quickstore: a performance study. In
Proceedings of ACM SIGMOD, pages 187-198, 1995.



