Tolerating latency in replicated state machines through client speculation
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Abstract ware [2, 33], and separate administrative domains. Geo-

Replicated state machines are an important and Widelygraphic distribution is one important way to achieve fail-
studied methodology for tolerating a wide range of ure independence when confronted with failures such as

faults. Unfortunately, while replicas should be dis- POWer outages, natural disasters, and physical attacks.
tributed geographically for maximum fault tolerance, Unfortunately, distributing the replicas geogra_\phlcally
current replicated state machine protocols tend to magincreases the network latency between replicas, and
nify the effects of high network latencies caused by ge-Many .protocols for repllcateq state machines are highly
ographic distribution. In this paper, we examine how to Sensitive tq latency. In part|c_ular, protqcols thgt toler-
use speculative execution at the clients of a replicate@!® Byzantine faults must wait for multiple replicas to
service to reduce the impact of network and protocol la-"€Pl, S0 the effective latency of the service is limited
tency. We first give design principles for using client by the latency of the slowest replica bemg waited for.
speculation with replicated services, such as generating9reement-based protocols further magnify the effects
early replies and prioritizing throughput over latency. We Of high network latency because they use multiple mes-
then describe a mechanism that allows speculative client$®g€ rounds to reach agreement. Some implementations
to make new requests through replica-resolved speculdl@y also choose to delay requests and batch them to-
tion and predicated writes. We implement a detailed cas@®ther to improve throughput.

study that applies this approach to a standard Byzantine Our work uses speculative execution to allow clients
fault tolerant protocol (PBFT) for replicated NFS and Of replicated services to be less sensitive to high laten-
counter services. Client speculation trades in 18% maxcies caused by network delays and protocol messages.
imum throughput to decrease the effective latency unde¥Ve observe that faults are generally rare, and, in the ab-
light workloads, letting us speed up run time on single-Sence of faults, the response from even a single replica
client micro-benchmarks 1.08—%9when the client is IS an excellent predictor of the final, collective response
co-located with the primary. On a macro-benchmark, re-from the replicated state machine. Based on this observa-

duced latency gives the client a speedup of upxto 5 tion, clients in our system can proceed after receiving the
. first response, thereby hiding considerable latency in the
1 Introduction common case in which the first response is correct, es-

As more of society depends on services running on compecially if at least one replica is located nearby. When
puters, tolerating faults in these services is increagingl responses are completely predictable, clients can even
important. Replicated state machines [34] provide a gencontinue before they receive any response.
eral methodology to tolerate a wide variety of faults, To provide safety in the rare case in which the first
including hardware failures, software crashes, and maresponse is incorrect, a client in our system may only
licious attacks. Numerous examples exist for how tocontinue executingpeculatively, until enough responses
build such replicated state machines, such as those basetke collected to confirm the prediction. By tracking all
on agreement [8, 11, 22, 25] and those based on quceffects of the speculative execution and not externaliz-
rums [1, 11]. ing speculative state, our system can undo the effects of
For replicated state machines to provide increasedhe speculation if the first response is later shown to be
fault tolerance, the replicas should fail independently.incorrect.
Various aspects of failure independence can be achieved Because client speculation hides much of the la-
by using multiple computers, independently written soft-tency of the replicated service from the client, replicated



servers in our system are freed to optimize their behavioamong replicas in an agreement-based protocol. If repli-
to maximize their throughput and minimize load, such ascas are separated by geographic distances (as they should
by handling agreement in large batches. be in order to achieve failure independence), network
We show how client speculation can help clients oflatency introduces substantial delay between the time a
a replicated service tolerate network and protocol la-client starts an operation and the time the client receives
tency by adding speculation to the Practical Byzantinethe reply that commits the operation. Thus, there is sub-
Fault Tolerance (PBFT) protocol [8]. We demonstratestantial time available to benefit from speculative execu-
how performance improves for a counter service and arion, especially if one replica is located near the client.
NFSv2 service on PBFT from decreased effective latency Replicated services also provide an excellent predictor
and increased concurrency in light workloads. Speculaof an operation’s result. Under the assumption that faults
tion improves the client throughput of the counter serviceare rare, a client’s request will generate identical replie
2-58x across two different network topologies. Specu-from every replica, so the first reply that a client receives
lation speeds up the run time of NFS micro-benchmarksgs an excellent predictor of the final, collective reply from
1.08-19< and up to & on a macro-benchmark when the replicated state machine (which we refer to as the
co-locating a replica with the client. When replicas areconsensus reply). After receiving the first reply to any
equidistant from each other, our benchmarks speed up byperation, a client can speculatased on 1 reply with
1.06-6< and 2.2, respectively. The decrease in latency high confidence. For example, when an NFS client tries
that client speculation provides does have a cost: undao read an uncached file, it cannot predict what data will
heavy workloads, maximum throughput is decreased bye returned, so it must wait for the first reply before it

18%. can continue with reasonable data.
We next describe our general approach to adding client The results of some remote operations can be pre-
speculation to a system with a replicated service. dicted even before receiving any replies; for instance, an

NFS client can predict with high likelihood of success
that file system updates will succeed and that read oper-
2.1 Speculative execution ations will return the same (possibly stale) values in its

Speculative execution is a general latency-hiding techS@che [28]. For such operations, a client may speculate

nique. Rather than wait for the result of a slow operation,225ed on 0 rgplies§ir1nﬁg E can preﬁict the result of a re-
a computer system may instead predict the outcome o0t operation with high probability.
that operation, checkpoint its state, and speculatively €x2 3 Protocol adjustments

ecute further operations using the predicted result. If the . ) .
speculation is correct, the checkpoint is committed and®@s€d on the above discussion, it becomes clear that

discarded. If the speculation is incorrect, it is aborted,SOMe replicated state machine protocols will benefit

and the system rolls back its state to the checkpoint anff'ore from speculative execution than others. For this

re-executes further operations using the correct result, '€SOn, we propose several adjustments to protocols that
In general, speculative execution is beneficial only if increase the benefit of client-based speculation.

the time to checkpoint state is less than the time to pero 31 Generate early replies

form the operation that generates the result. Further, the . )
outcome of that operation must be predictable. IncorrecSince the maximum latency that can be hidden by spec-

speculations waste resources since all work that depend¥ative execution, in the absence of O-reply speculation,
on a mispredicted result is thrown away. This waste low-1S the time between when the client receives the first re-
ers throughput, especially when multiple entities are parP!y from any replica and when the client receives enough
ticipating in a distributed system, since the system might€Plies to determine the consensus response, a protocol
have been able to service other entities in lieu of doingshould be designed to get the first reply to the client as
work for the incorrect speculation. Thus, the decision ofduickly as possible. The fastest reply is realized when
whether or not to speculate on the result of an operatioih€ client sends its request to the closest replica, and that
often boils down to determining which operations will be replica responds immediately. Thus, a protocol that sup-

slow and which slow operations have predictable resultsPOrts client speculation should have one or more replicas
immediately respond to a client with the replica’s best

guess for the final outcome of the operation, as long as
Replicated services are an excellent candidate for clientthat guess can accurately predict the consensus reply.

based speculative execution. Clients of replicated state Assuming each replica stores the complete state of the
machine protocols that tolerate Byzantine faults mustservice, the closest replica can always immediately per-
wait for multiple replicas to reply. That may mean wait- form and respond to a read-only request. However, that
ing for multiple rounds of messages to be exchangedeply is not guaranteed to be correct in the presence of

2 Client speculation in replicated services

2.2 Applicability to replicated services



concurrent write operations. It could be wrong if the dent to choose a protocol that has higher latency but
closest replica is behind in the serial order of operationshigher potential throughput, perhaps through batching,
and returns a stale value, or in quorum protocols whereand stable performance under write contention [8, 22],
the replica state has diverged and is awaiting repair [1]rather than protocols that optimize latency over through-
We describe optimizations in Section 3.2.2 that allowput [1, 11].

early responses from any replica in the system, along Animportant corollary of this observation is that client
with techniques to minimize the likelihood of an incor- speculation allows one to choose simpler protocols. With
rect speculative read response. speculation, a complex protocol that is highly optimized

It is more difficult to allow any replica to immediately to reduce latency may perform approximately the same
execute a modifying request in an agreement protocolas a simpler, higher latency protocol from the viewpoint
Backup replicas depend on the primary replica to de-of a user. A simpler protocol has many benefits, such
cide a single ordering of requests. Without waiting for as allowing a simpler implementation that is quicker to
that ordering, a backup could guess at the order, spedevelop, is less prone to bugs, and may be more secure
ulatively executing requests as it receives them. How-because of a smaller trusted computing base.
ever, itis unlikely that each replica will perceive the same
request ordering under workloads with concurrent writ-
ers, especially with geographic distribution of replicas. To ensure correctness, speculative execution must avoid
Should the guessed order turn out wrong (beyond aceutput commits that externalize speculative output (e.g.,
ceptable levels [23]), the replica must roll back its stateby displaying it to a user) since such output can not be
and re-execute operations in the committed order, hurtundone once externalized. The definition of what consti-
ing throughput and likely causing its response to changetutes external output, however, can change. For instance,

For agreement protocols like PBFT, a more elegant sosending a network message to another computer would
lution is to have only the primary execute the requestbe considered an output commit if that computer did not
early and respond to the client. As we explain in Sec-support speculation. However, if that computer could be
tion 3.3, such predictions are correct unless the primantrusted to undo, if necessary, any changes that causally
is faulty. This solution enables us to avoid speculation ordepend on the receipt of the message, then the message
complex state management on the replicas that would rewould not be an output commit. One can think of the
duce throughput. Used in this way, the primary should bdatter case as enlarging theundary of speculation from
located near the most active clients in a system to reducpist a single computer to encompass both the sender and
their latency. receiver.

What should be the boundary of speculation for a
replicated service? At least three options are possible:
There exist a myriad of replicated state machine proto-allow all replicas and clients of the service to share spec-
cols that offer varying trade-offs between throughput andulative state, allow replicas to share speculative statfe wi
latency [1, 8, 11, 22, 30, 32, 37]. Given client support for individual clients but not to propagate one client’s spec-
speculative execution, it is usually best to choose a proulative state to other clients, and disallow replicas from
tocol that improves throughput over one that improvesstoring speculative state.
latency. The reason is that speculation can do much to Qur design uses the third option, with the smallest
hide replica latency but little to improve replica through- houndary of speculation, for several reasons. First, the
put. complexity of the system increases as more parts partic-

As discussed in the previous section, speculative exipate in a speculation. The system would need to use
ecution can hide the latency that occurs between the redistributed commit and rollback [14] to involve replicas
ceipt of an early reply from a replica and the receipt of and other clients in the speculation, and the interaction
the reply that ends the operation. Thus, as long as a spepetween such a distributed commit and the normal repli-
ulative protocol provides for early replies from the clos- cated service commit would need to be examined care-
est or primary replica, reducing the latency of the overallfully. Second, as the boundary of speculation grows
operation does not ordinarily improve user-perceived la-arger, the cost of a misprediction is higher; all repli-
tency. cas and clients that see speculative state must roll back

Speculation can only improve throughput in the caseall actions that depend on that state when a prediction is
where replicas are occasionally idle by allowing clientswrong. Finally, it may be difficult to precisely track de-
to issue more operations concurrently. If the replicas argpendencies as they propagate through the data structures
fully loaded, speculation may even decrease throughpudf a replica, and any false dependencies in a replica’s
because of the additional work caused by mispredictionstate may force clients to trust each other in ways not re-
or the generation of early replies. Thus, it seems pru-quired by the data they share in the replicated service.

2.3.3 Avoid speculative state on replicas

2.3.2 Prioritize throughput over latency
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Even with this small boundary of speculation, we would

still like to allow clients to issue new requests that de-Figure 1: PBFT-CS Protocol Communication. The early

pend on speculative state (which we cgpéculative re- response from the primary is shown with a dashed hollow
quests). Speculative requests allow a client to continuearrow, which replaces its response from the Reply phase
submitting requests when it would otherwise be forced to(dotted filled arrow) in PBFT.

block. These additional requests can be handled concur-

rently, increasing throughput when the replicas are noé Client speculation for PBFT

already fully saturated.

o i o In this section, we apply our general strategy for support-
_ One complication here is that, to maintain correctness, . cjient speculative execution in replicated services to
if one of the prior operations on Wh'_Ch the client IS SPEC-the practical Byzantine Fault Tolerance (PBFT) protocol.
ulating fails, any dependent operations that the client IS\\/e call the new protocol we develop PBFT-CS (CS de-

sues must also abort. There is currently no mechanism s the additional support for client speculation).
for areplica to determine whether or not a client received

a correct speculative response. Thus, the replica is un3-1 PBFT overview

able to detect whether or not to execute subsequent dBFT is a Byzantine fault tolerant state machine repli-
pendent speculative requests. cation protocol that uses a primary replica to assign

To overcome this flaw, we proposeplica-resolved each client request a sequence number in the serial or-
speculation through predicated writes, in which replicas der of operations. The replicas run a three-phase agree-

are given enough information to determine whether theMeNt Protocol to reach consensus on the ordering of each
speculations on which requests depend will commit orPPeration, after which they can execute the operation
abort. With predicated writes, an operation that modifiesV/Nilé_énsuring consistent state at all non-faulty repli-

state includes a list of the active speculations on whicHas: Optionally, the primary can choose and attaa
it depends, along with the predicted responses for thosg€terministic data to each request (for NFS, this contains

speculations. Replicas log each committed response thdff€ current time of day).

send to clients and compare each predicted response in PBFT requiressf + 1 replicas to handlg’ concurrent

a predicated write with the actual response sent. If alfaulty replicas, which is the theoretical minimum [5].
predicated responses match the saved versions, the spedl€ Protocol guarantees liveness and correctness with
ulative request is consistent with the replica’s response!P 10/ failures, and runs aiew change sub-protocol to
and it can execute the new request. If the responses d§0Ve the primary to another replica in the case of a bad
not match, the replica knows that the client will abort PrmMary o _ o
this operation when rolling back a failed speculation, so 1 N€ communication pattern for PBFT is shown in Fig-
it discards the operation. This approach assumes a prdi'® 1. The client normally receives a commit after five

tocol in which all non-faulty replicas send the same re-On€-way message delays, although this may be short-
sponse to a request. ened to four delays by overlapping tbemmit andre-

ply phases using tentative execution optimization [8].
Note that few changes may need to be made to a profo reduce the overhead of the agreement protocol, the
tocol to handle speculative requests that modify data. Arprimary may collect a number of client requests into a
operationO that depends on a prior speculatiog, with  batch and run agreement once on the ordering of opera-
predicted response may simply be thought of as a sin- tions within this batch.
gle deterministic request to the replicated service of the |n our modified protocol, PBFT-CS, the primary re-

predicated form:i f response(Os) = r, thendo O.  sponds immediately to client requests, as illustrated by
This predicate must be enforced on the replicas. Howthe dashed line in Figure 1.

ever, as shown in Section 5, predicate checking may be
performed by a shim layer between the replication pro—?"2 PBFT-CS base protocol

tocol and the application without modifying the protocol In both PBFT and PBFT-CS, the client sends each re-
itself. quest to all replicas, which buffer the request for execu-



tion after agreement. Unlike the PBFT agreement protothe operation.

col, the primary in PBFT-CS executes an operation im- It is infeasible for replicas to maintain an unbounded
mediately upon receiving a request and sends the earlgligest log for each client in a long-running system, so
reply to the client as a speculative response. The primarf’BFT-CS truncates these logs periodically. Replicas
then forms a pre-prepare message for the next batch afiust make a deterministic decision on when to truncate
requests and continues execution of the agreement protekeir logs to ensure that non-faulty replicas either all ex-
col. Other replicas are unmodified and reply to the clientecute the operation or all abort it. This is achieved by
request once the operation has committed. truncating the logs at fixed deterministic intervals.

Since the primary determines the serial ordering of all If a client issues a request containing a dependency
requests, under normal circumstances the client will rethat has since been discarded from the log, the repli-
ceive at leastf committed responses from the replicas cas abort the operation, replacing it with a no-op. The
matching the primary’s early response. This signifies thatlient recognizes this scenario when receiving a consen-
the speculation was correct because the request commigus response that contains a spewty result. It retries
ted with the same value as the speculative response. #xecution once all its dependencies have committed. In
the client receiveg + 1 matching responses that differ practice an operation will not abort due to missing de-
from the primary’s response, the client rolls back the cur-pendencies, provided that the log is sufficiently long to
rent speculation and resumes execution with the consenecord all operations issued in the time between a replica
Sus response. executing an operation and a quorum of responses being

321 Predicated writes received by the client.

A PBFT-CS client can issue subsequent requests imme>2-2 Read-only optimization

diately after predicting a response to an earlier requestMany state machine replication protocols provide a read-
rather than waiting for the earlier request to commit. Toonly optimization [1, 8, 11, 22] in which read requests
enable this without requiring replicas themselves to speccan be handled by each replica without being run through
ulate and potentially roll back, PBFT-CS ensures that ahe agreement protocol. This allows reads to complete in
request that modifies state does not commit if it depends, single communication round, and it reduces the load on
on the value of any incorrect speculative responses. Tehe primary.
meet this requirement, clients must track and propagate |n the standard optimization, a client issues optimized
the dependencies between requests. read requests directly to each replica rather than to the
For example, consider a client that reads a value storegirimary. Replicas execute and reply to these requests
in a PBFT-CS database§1), performs some computa- without taking any steps towards agreement. A client
tion on the data, then writes the result of the computacan continue after receivingf + 1 matching replies.
tion back to the database{2). If the primary returns  Because optimized reads are not serialized through the
an incorrect speculative result fop1, the value to be agreement protocol, other clients can issue conflicting,
written inop2 will also be incorrect. Whenpl eventu-  concurrent writes that prevent the client from receiving
ally commits with a different value, the client will fail its  enough matching replies. When this happens, the client
speculation and resume operation with the correct valueretransmits the request through the agreement protocol.
Although the client cannot undo the sencb@2, depen-  This optimization is beneficial to workloads that con-
dency tracking preventsp2 from writing its incorrect  tain a substantial percentage of read-only operations and
value to the database. exhibit few conflicting, concurrent writes. Importantly,
Each PBFT-CS client maintains a log of the digekts ~ when a backup replica is located nearer a client than the
of each speculative response issued at logical timestamprimary, that replica’s reply will typically be received by
T. When an operation commits, its corresponding digesthe client before the primary’s.
is removed from the tail of the log. If an operation aborts, PBET-CS cannot use this standard optimization with-
its digest is removed from the log, along with the digestsout modification. A problem arises when a client is-
of any dependent operations. sues a speculative request that depends on the predicted
Clients append any required dependencies to eactesponse to an optimized read request. PBFT-CS re-
speculative request, of the forfw, (¢;,d;), ...} forclient  quires all non-faulty replicas to make a deterministic de-
c and each digest; at timestamg;. cision when verifying the dependencies on an operation.
Replicas also store a log of digests for each client withHowever, since optimized reads aw@ serialized by the
the committed response for each operation. The replicagreement protocol, one non-faulty replica may see a
executes a speculative request only if all digests in the reeonflicting write before responding to an optimized read,
guest’'s dependency list match the entries in the replica’svhile another non-faulty replica sees the write after re-
log. Otherwise, the replica executes a no-op in place osponding to the read. These two non-faulty replicas will



thus respond to the optimized read with different valuesyeplicas. Failed speculations also increase the latency
and they will make different decisions when they verify of a client’s request, forcing it to roll back after having
the dependencies on a later speculative request. A nomwaited for the consensus response, and hurt throughput
faulty replica that sent a response that matches the firdty forcing outstanding requests to become no-ops. It is
speculative response received by the client will commitimportant for our protocol to handle faults correctly in a
the write operation, while other non-faulty replicas will way that still tries to preserve performance.
not. Hence, writes may not depend on uncommitted op- A speculation will fail on a client when the first re-
timized reads. This is enforced at each replica by nofly it receives to a request does not match the consensus
logging the response digest for such requests. response. There are three cases in which this might hap-
We address this problem by allowing a PBFT-CS pen:

client to resubmit optimized read requests through the ¢ The most common case occurs when a write issued

full agreement protocol, forcing the replicas to agree on by another client conflicts with an optimized read.
acommonresponse. When write conflicts are low, the re- In an extreme instance, one rep”ca's ear|y rep|y
submitted read is likely to have the same reply as the ini- ~ could contain the stale data while all other replicas
tial optimized read, so a speculative prediction is likely reply with current data.

to still be correct. After performing this procedure, we
can send any dependent write requests, as they no longer
depend on an optimized request.

There are three issues that must be considered for a
read request to be submitted using this optimization.

e The second case occurs when there is a view
change. PBFT ensures that committed requests
will be ordered the same in the new view, but
the client is speculating on uncommitted requests
that the new replica could order differently. View

e The request cannot read uncommitted state. changes may be the result of a bad primary, or they
e The client should not follow a read with a write. may be triggered by network conditions or proac-
e The reply should not be completely predictable. tive recovery [9].

The first issue is required for consistency. A client ® The third case occurs when the primary is faulty,
cannot optimize a read request for a piece of state before ~ and it either returns an incorrect speculative re-
all its write requests for that state are committed. Other- sponse or serializes a request differently when run-
wise, it risks reading stale data when a sufficient number ~ ning the agreement protocol. We next examine this
of backup replicas have not yet seen the client’s previous ~ scenario further.
writes. The data dependency tracking required to imple- It is trivial for a client to detect a faulty primary: a
ment this policy is also used to propagate speculations, stequest’s early reply from the primary and the consensus
no extra information needs to be maintained. Reads thatply will be in the same view and not match. If signed
do depend on uncommitted data may still be submittedesponses are used, the primary’s bad reply can be given
through the agreement protocol as with write requeststo other replicas as a proof of misbehavior. However, if
Should a client desire a simpler policy for ensuring cor-simple message authentication codes (MACs) are used,
rectness, it can disable the read-only optimization whilethe early reply cannot be used in this way since MACs
it has any uncommitted writes. do not provide non-repudiation.

Second, consider a client that reads a value, performs The simplest solution to handling faults with MACs is
a computation, and then writes back a new value. If thefor a client to stop speculating if the percentage of failed
read request is initially sent optimized, issuing the write speculations it observes surpasses a threshold. PBFT-
will force the read to be resubmitted. The “optimization” CS currently uses an arbitrary threshold of 1%. If a
results in additional work. Clients that anticipate follow client observes that the percentage of failed speculations
ing a read by a write should decline to optimize the readis greater than 1% over the paskarly replies provided

Finally, if a client can predict the outcome of the re- by a replica, it simply ceases to speculate on subsequent
guest before receiving any replies (for instance, if it pre-early replies from that replica. Although it will not spec-
dicts that a locally-cached value has not become stale}jlate on subsequent replies, it can still track their accu-
then it should submit the request through the normalkacy and resume speculating on further replies if the per-
agreement protocol. Since the client does not need taentage falls below a threshold. Our experimental results
wait for any replies, it is not hurt by the extra latency of verify that at this threshold, PBFT-CS is still effective at
waiting for agreement. reducing the average latency under light workloads.

3.3 Handlingfailures 3.4 Correctness

Speculation optimizes for reduced latency in the non-The speculative execution environment and PBFT proto-
failure case, but it is important to ensure that correct-col used in our system both have well-established cor-
ness and liveness are maintained in the presence of faultgctness guarantees [7, 28]. We thus focus our attention



on the modifications made to PBFT, to ensure that thigopends on the reply to an optimized read request; correct

protocol remains correct. clients will never issue such a request. Replicas do not
Our modified version of PBFT differs from the origi- store the responses to optimized reads in their log and
nal in several key ways: hence always ignore any request sent by a faulty client

e A client may be sent a speculative response thawvith a dependency on an optimized read.

differs from the final consensus value. Speculative execution In our modified protocol, the

e A client may submit an operation that depends onprimary executes client requests immediately upon their

a failed speculation. receipt, before the request has undergone agreement. The
e The primary may execute an operation before itagreement protocol dictates that all non-faulty replicas
commits. commit operations in the order proposed by the primary,
We evaluate each modification independently. unless they execute a view change to elect a new pri-

mary. After a view change, the new primary may reorder

Incorrect speculation A bad primary may send an in- tted . d by th :
correct speculative response to a client, in that it differs>°Me uncommitted operations executed by the previous

on the value or ordering of the final consensus value. wdrmary, however, thg PBFT view changg protocol en-
also consider in this class an honest primary that sends 2res th_at any committed operations persist into the new
speculative response to a client but is unable to complet lew. Itis safe for the 9|d pnmary_to re_store Its _state to
agreement on this response due to a view change. In efne most recent commlt_ted operation since any incorrect
ther case, the client will only see the consensus responsiP€culative response will be rolled back by clients where

once the operation has undergone agreement at a quoruﬂg?cessary.

of replicas. If the speculative response was incorrect, iy  Djscussion and future optimizations
is safe for the client to roll back the speculative execu-

tion and re-run using the consensus value, since PBFT? this section, we further explore the protocol design

ensures that all non-faulty replicas will agree on the con-SPace for the use of client speculation with PBFT. We
sensus value. compare and contrast possible protocol alternatives with

) o ) the PBFT-CS protocol that we have implemented.
Dependent operations A further complication arises

when the client has issued subsequent requests that d&1 Alternativefailure handling strategies

pend on the value of a speculative response. Here, thg/e considered two alternative strategies for dealing with
speculation protocol on the client ensures that it rollsfaulty primaries. First, we could allow clients to request
back execution of any operations that have dependencies view change without providing a proof of misbehav-
on the failed speculation. We must ensure that all validior. This scheme would seem to significantly compro-
replicas make an identical decision to abort each depenmise liveness in a system containing faulty clients since
dent operation by replacing it with a no-op. they can force view changes at will. However, this is an
Replicas maintain a log of the digests for each com-existing problem in BFT state machine replication in the
mitted operation and truncate this log at deterministicabsence of signatures. A bad client in PBFT is always
intervals so that all non-faulty replicas have the sameable to force a view change by sending a request to the
log state when processing a given operation. Predicategrimary with a bad authenticator that appears correct to
writes in PBFT-CS allow the client to express the specu-the primary or by sending different requests to different
lation dependencies to the replicas. A non-faulty replicareplicas [7]. We could mitigate the damage a given bad
will not execute any operation that contains a depenclient can do by having replicas make a local decision to
dency that does not match the corresponding digest ifignore all requests from a client that ‘framed’ them. In
the log, or that does not have a matching log entry. Sincehis way a bad client can not initiate a view change after
the predicated write contains the same information useghcriminating f primaries.
by the client when rolling back dependent operations, the - Alternatively, we could require signatures in commu-
replicas are guaranteed to abort any operation aborted byications between client and replicas. This is the most
the client. If a client submits a dependency that has sincetraight-forward solution, but entails significant CPU
been truncated from the log, it will also be aborted. overhead. Compared to these two alternative designs,
The only scenario where replicas are unable to dewe chose to have PBFT-CS revert to a non-speculative
terministically decide whether a speculative responserotocol due to the simplicity of the design and higher
matches its agreed-upon value is when a speculative rggerformance in the absence of a faulty primary.
sponse was produced using the read-only optimization, . .
Here, different replicas may have responded with dif“fer-A"2 Coar se-grained dependency tracking
ent values to the read request. We explicitly avoid thisPBFT-CS tracks and specifies the dependencies of a
case by making it an error to send a write request that despeculative request at fine granularity. Thus, message



size and state grow as the average number of dependen- Client

: ) ; ¢ Replicas
cies for a given operation increases. To keep message
size and state constant, we could use coarser-grained de- | libbyz Sﬁ,"’c_ NFSD
pendencies. Speculator m—p SOIM

. . . : : Rel ibb
ensuring that a replica executes a request from a client af ! NFS ;| |Relay |libbyz

logical timestamy@” only if all outstanding requests from R : \ -
. . . . . libbyz | spec
that client prior to timel” have committed with the same b shim |
value the client predicted.
Instead of maintaining a list of dependencies, €ach rig e 2: Speculative fault-tolerant NFS architecture
client would instead store a hash chained over all consen-
sus responses and subsequent speculative responses. The
client would append this hash to each operation in placexecutedn the past, at a logical time when the replicas
of the dependency list. The client would also keep anhave not yet processed all operations that are undergoing
other hash chained only over consensus responses, whielyreement but when they still share a consistent state.
it would use to restore its dependency state after rolling Wwe could extend the PBFT-CS read-only optimization
back a failed speculation. to also allow reads in the past. Under a typical configu-
Each replica would maintain a hash chained over reration, there is only one round of agreement executing at
sponses sent to the client and would execute an operamny one time, with incoming requests buffered at the pri-
tion if the hash chain in the request matches its record ofnary to run in the next batch of agreement. If we were to
responses. Otherwise, it would execute a no-op. ensure that all buffered reads are reordered, when possi-
We chose not to use this optimization in PBFT-CSble, to be serialized at the start of this next batch, it would
since the use of chained hashes creates dependencies be-highly likely that no write will come between a read
tween all operations issued by a client even when ndeing received by a replica and the read being serialized
causal dependencies exist. This increases the cost ofafter agreement.
failed speculation since the failure of one speculative re- Note that the primary may assign any order to requests
quest causes all subsequent in-progress speculative op&yithin a batch as long as no operation is placed before
ations to abort. Coarse-grained dependency tracking alsene on which it depends. Recall that a PBFT-CS client
limits the opportunities for running speculative read op-will only optimize a read if the read has no outstanding
erations while there are active speculative writes. Sincevrite dependencies. Hence, the primary is free to move
speculative read responses are not serialized with respegll speculative reads to the start of the batch. The primary
to write operations, it is likely that the client will insert executes these requests on a snapshot of the state taken
the read response in the wrong point in the hash chainpefore the batch began.
causing subsequent operations to abort.

4.3 Readsin the past

We could track dependencies on a per-client basis by| .---------

NESD

5 Implementation

We modified Castro and Liskov’s PBFT libraryib-
A read-only request need not circumvent the agreety; [g], to implement the PBFT-CS protocol described
ment protocol completely, as described in section 3.2.2jn Section 3. We also modified BFS [8], a Byzantine-
A client can instead take a hybrid approach for non-fayt-tolerant replicated file service based on NFSv2, to
modifying requests: it can submit the request for full sypport client speculation. The overall system can be
agreement and at the same time have the nearest repliggided into three parts as shown in Figure 2: the NFS

immediately execute the request. client, a protocol relay, and the fault-tolerant service.
If the primary happens to be the nearest to the client ) .
5.1 NFSclient operation

this is not a change from the normal protocol. When an-
other replica is closer, the client can get a lower-latencyOur client system uses the NFSv2 client module of
first reply, plus having agreement eliminates the secondhe Speculator kernel [28], which provides process-level
consideration for optimized reads (in Section 3.2.2), thatsupport for speculative execution. Speculator supports
a client should not follow a read with a write. fine-grained dependency tracking and checkpointing of
However, this new optimization presents a problemindividual objects such as files and processes inside the
when there are concurrent writes by multiple clients. ALinux kernel. Local file systems are speculation-aware
non-primary replica will execute an optimized request,and can be accessed without triggering an output com-
and a client will speculate on its reply, in a sequential or-mit. Speculator buffers external output to the termi-
der that is likely different from the request’s actual order nal, network, and other devices until the speculations on
in the agreement protocol. In essence, the read has beevhich they depend commit. Speculator rolls back pro-



cess and OS state to checkpoints and restarts execution if
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To execute a remote NFS operation, Speculator first & PBFT-CS (4) 8- i
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attaches a list of the process’s dependencies to the mes-
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sage, then sends it to a relay process on the same ma-3 ;18 \BB:

chine. The relay interprets this list and attaches the cor- 5

rect predicates when sending the PBFT-CS request. é 20 i
The relay brokers communication between the client + 10£ i

and replicas. It appears to be a standard NFS server to 071 1'0 1'00

the client, so the client need not deal with the PBFT-CS
protocol. When the relay receives the first reply to a 1-

Number of Clients

rep_ly speculatipn, the reply is ngged and _passed to th%—igure 3: Server throughput in a LAN, measured on the
waiting NFS client. The NFS client recognizes specula—Shared counter service. PBFT-CS (4) is limited to four
tive data, creates a new speculation, and waits for a COMNsoncurrent requests

firmation message from the relay. Once the consensus
reply is known, the relay sends eitheicammi t mes-

Overhead Source| Slowdown
sage or a ol | back{r epl y} message containing the Early replies 8.2%
correct response. Larger request 4.1%
Our implementation speculates based on 0 replies for Complex client 2.8%
GETATTR, SETATTR, WRI TE, CREATE, andREMOVE calls. Predicate checking  1.8%

It can speculate on 1 reply f@ETATTR, LOOKUP, and i .

READ calls. This list includes the most common NFS Table 1: Majorsogrces of overhead affecting throughput
operations: we observed that at least 95% of all calls if?" PBFT-CS relative to PBFT.

all our benchmarks were handled speculatively. Note that

we speculate on both O replies and 1 reply@&TATTR  quest non-deterministic data, to execute requests, and to
calls. The kernel can SpeCUIate as soon as it has attribut%nstruct error rep”es_ The |ibrary handles all commu-
for a file. When the attributes are cached, 0 replies argjcation and state management, including checkpointing
needed, otherwise, the kernel waits for 1 reply beforegng recovery.
continuing. A shim layer is used to manage dependencies on repli-
52 PBFT-CSclient operation cas. When Writes_need to be_ quashe_d due to failed specu-
lative dependencies, the shim layer issues a no-op to the
Speculation hides latency by allowing a single client toseryice instead. Thus, the underlying service is not ex-
pipeline many requests; however, our PBFT implemenyosed to details of the PBFT-CS protocol.
tation only allows for each PBFT-CS clientto have asin-  The primary will batch together all requests it receives
gle outstanding request at any time. We work aroundyhile it is still agreeing on earlier requests. Batch-
this limitation by grouping up to 100 logical clients into jng is a general optimization that reduces the number
a single client process. of protocol instances that must be run, decreasing the
NFS with O-reply speculation requires its requests tonumber of communications and authentication opera-
be executed in the order they were issued. A PBFT-CSjons [8, 22, 23, 37]. This implementation imposes a

client process can tag each request with a sequence numyaximum batch size of 64 requests, a limit our bench-
ber so that the primary replica will only process requestsmarks do run up against.

from that client process’s logical clients in the correct or .
der. Of course, two different clients’ requests can still be6 Evaluation
interleaved in any order by the primary. In this section, we quantify the performance of our
To support this additional concurrency, we designedPBFT-CS implementation. We have implemented a sim-
the client to use an event-driven API. User programs pasple shared counter micro-benchmark and several NFS
requests to libbyz and later receive two callbacks: onemicro- and macro-benchmarks.
delivers the first reply and another delivers the consensus We compare PBFT-CS against two other Byzan-
reply. The user program is responsible for monitoringtine fault-tolerant agreement protocols: PBFT [8] and
libbyz’'s communication channels and timers. Zyzzyva [22]. PBFT is the base protocol we extend make
use of client speculation. Its overall structure is illus-
trated in Figure 1. We use the tentative reply optimiza-
On the replicas, libbyz implements an event-based servetion, so each request must go through 4 communication
that performs upcalls into the service when needed: to rephases before the client acquires a reply that it can act on.

5.3 Server operation



] O PBFT-CS ] 10/100 switch.

100-] 8 PBFT-CS(4) 100-] Our target usage scenario is a system that cqnsists of
_ 0| W Zyzzyva ] several sites joined by moderate latency connections (but
§ {0 PBFT 1 slower than LAN speeds). Each site has a high-speed
o |@Norep ] LAN hosting one replica and several clients, and clients
E 50 50 may also be located off-site from any replica. For com-

| | parison with other agreement protocols, we also consider
using PBFT-CS in a LAN setting where all replicas and
0 | 0 clients are on the same local segment.
0 25 15 0 25 15 Based on the above scenarios, we emulate a simpli-
Network delay (ms) fied test network using NISTNet [6] that inserts an equal
(a) Primary-local (b) Uniform amount of one-way latency between each site. We let this

inserteddelay be either 2.5 ms or 15 ms.
Figure 4. Time taken to run 2000 updates using the We also measure performance at clients located in dif-
shared counter service. The primary-local topology (a) ferent areas in our scenario. In themary-local topol-
shows a client located at the same site as the primarygy, the client is at the same site as the current primary
The uniform topology (b) shows a remote client equidis-replica. Theprimary-remote topology considers a client
tant from all sites. 0 ms (LAN) times for both graphs are at different site hosting a backup replica. A client not
(in bar order): 0.36 s, 0.27 s,0.41 s,0.54 s, and 0.16 s. present at any site is shown in theiform topology, and
we let the client have the same one-way latency to all
replicas as between sites.
PBFT uses an adaptive batching protocol, allowing up to \yhen comparing against a service with no replication
64 requests to be handled in one agreement instance. ;, 4 given topology, we always assume that a client at a
Zyzzyva is a recent agreement protocol that is heavilysite can access its server using only the LAN. A client
optimized for failure-free operation. When all replicas not at a site is still subject to added delay.
are non-faulty (as in our experiments), it takes only 3
phases for a client to possess a consensus reply. We rnfh? Counter throughput
Kotla et als implementation of Zyzzva, which uses ae first examine the throughput of PBFT-CS using the
fixed batch size. We simulate an adaptive batching stratcounter service. Similar to Castro and Liskov’s standard
egy by manually tuning the batch size as needed for besj/0 benchmark [8], the counter’s request and reply size
performance. are minimal. This service exposes only one operation:
By comparison, a PBFT-CS client can continue exe-increment the counter and return its new value. Each
cuting speculatively after only 2 communication phasesreply contains a token that the client must present on its
We expect this to significantly reduce the effective la-next request. This does add a small amount of processing
tency of our clients. Note that requests still require 4time to each request, but it ensures that client requests
phases t@ommit, but we can handle those requests con-must be submitted sequentially.
currently rather than sequentially. If we limit the number  Qur client is a simple loop that issues a fixed num-
of in-flight requests to some numbey we call the pro-  ber of counter updates and records the total time spent.
tocol “PBFT-CS ().” No state is externalized by the client, so we allow the
client process to implement its own lightweight check-
point mechanism. Checkpoint operations take negligible
Each replica machine uses a single Intel Xeon 2.8 GHzime, so our results focus on the characteristics of the
processor with 512 MB RAM (sulfficient for our appli- protocol itself rather than our checkpoint mechanism.
cations). We always evaluate using four replicas without We measure throughput by increasing the number of
failures (unless noted). In our NFS comparisons, we uselient processes per machine (up to 17 processes) until
asingle client that is identical in hardware to the replicas the server appears saturated. Graphs show the mean of at
Our counter service runs on an additional five client ma-least 6 runs, and visible differences are statistically sig
chines using Intel Pentium 4s or Xeons with clock speedsificant.
of 3.06-3.20 GHz and 1 GB RAM. All systems use a Figure 3 shows the measured throughput in a LAN
generic Red Hat Linux 2.4.21 kernel. configuration. We found that in this topology, a sin-
Our machines use gigabit Ethernet to communicate digle PBFT-CS client gains no benefit from having more
rectly with a single switch. Experiments using the sharedthan 4 concurrent requests, and we enforce that limit
counter service were performed on a Cisco Catalyst 2970n all clients. When we have 12 or fewer concur-
gigabit switch; NFS used an Intel Express ES101TXrent clients, PBFT-CS has 1.19-1x4%igher through-

6.1 Experimental setup
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Figure 5:Read-only NFS micro-benchmark performance across different netwapklogies. The last three data sets
use O-reply speculation. At 0 ms, all three topologies arévadent, so the same data is used for each graph.n®he
rep data show a lower bound for run time. There is only oweep data set for primary-local and primary remote
topologies, because the location of the server does nogehaith increasing latency. For these two graphs, the 0 ms
bar applies to all latencies but is not repeated.

put than Zyzzyva and 1.79s2higher throughput than PBFT and 33% less time than Zyzzyva, and its runtime
PBFT. is only 1% slower than the unreplicated service. This

In lightly loaded systems, the servers are not beingnatches our intuitive understanding of the protocol be-
fully utilized, and speculating clients can take advantagehavior described at the start of this section.
of the spare resources to decrease their own effective la- For PBFT-CS, the critical path is a round-trip commu-
tency. As the server becomes more heavily loaded, thoseication with the primary replica. Moving to a primary-
resources are no long free to use. As a result, PBFT-C&mote topology (bringing one backup replica closer)
reaches its peak throughput before other protocols. does not affect this critical path, and our measurements

There is a trade-off of throughput for latency: PBFT- show no significant difference between primary-remote
CS shows a peak throughput that is 17.6% lower tharand uniform topologies.

PBFT. We found four fundamental sources of overhead, Figure 4a presents results when using a primary-local
summarized in Table 1. First, the client implementa-topology. As latency increases and backup replicas move
tion for PBFT-CS uses an event-driven system to hanfurther from the client, performance does not degrade
dle several logical clients, needed to support concurrensignificantly, since the latency to the primary is fixed.
requests. This design does lead to a slower client thait 15 ms latency, a client using PBFT takesSBnger

the one in PBFT, which can get by with a simpler block- than with PBFT-CS. The combination of client specu-
ing design. Second, we found that having the primarylation and a co-located primary achieves much of the
send early replies increases its time spent blocking whilgperformance benefit of a closely located non-replicated
transmitting. Third, each predicate added to a requesserver, while providing all the guarantees of a geograph-
makes the request packet larger, and fourth, those predieally distributed replicated service that tolerates Byza
cates take additional work to verify on each replica. tine faults.

These significant gains are directly attributable to
the increased concurrency possible in the primary-local
We next examine how latency affects client performanceopology. When we limit PBFT-CS to only 4 outstanding
under a light workload when the client is located at dif- requests, the client must then wait on requests to commit,
ferent sites. Figure 4 shows the time taken for a singleeintroducing a dependence on communication delay. In
counter client to issue 2000 requests in different topolotopologies where the client does not have privileged ac-
gies. In the LAN topology where no delay is added, acess to the primary, as in the uniform topology, limiting
PBFT-CS client is able to complete the benchmark inconcurrency has little effect.

33% less time than PBFT, reflecting average run times

of 357 ms and 538 ms respectively. When we increas@'4 NFS

the latency between sites, run time becomes dominatede next examine PBFT-CS applied to an NFS server.
by number of communication phases. With a uniformConsidering that the NFSv2 protocol is not explicitly
topology (Figure 4b), PBFT-CS takes 50% less time thardesigned for high-latency environments, we compare

6.3 Counter latency
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Figure 6:Write-only NFS micro-benchmark.
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Figure 7:Read/Write NFS micro-benchmark.

against the variation of NFS that uses O-reply speculathe BFT relay.
tion. All benchmarks begin with a freshly-mounted file  Our modifications to the NFS client, the relay, and
system and an empty cache. the replicated service have introduced additional over-
Unlike the counter service, this application has over-head that is not present in the original PBFT. This inef-
head associated with creating, committing, and rollingficiency is particularly apparent in our 0 ms topologies,
back to a checkpoint. Processes may have computatiowhere PBFT-CS shows a 1.03-2:1.8lowdown relative
to perform between requests, and they may need to blocio PBFT across all our benchmarks. However, in all
before an output commit. cases at higher latencies, client speculation results in a
For comparison with non-speculative systems, weclear improvement, and we primarily address these con-
measure the performance of NFS under PBFT. Usindigurations in the following sections.
our speculative NFS protocol, we measure PBFT using At the time of publication, we had not yet ported our
only O-reply speculatiorRBFT + 0-spec) and PBFT-CS. NFS server to use the Zyzzyva protocol, so we regret-
The difference between these two measurements shofully are unable to provide a direct comparison for these
the benefit of 1-reply speculation. As a lower bound, webenchmarks.
also measure the performance of a non-replicated NFS All graphs show the mean of at least five measure-
server that uses O-reply speculatidio(rep + 0-spec). ments. Error bars are shown when the 95% confidence
We use a vanilla kernel for evaluating non-speculativeinterval is above 1% of the mean value.
PBFT with a slight modification that increases the num-
ber of concurrent RPC requests allowed. Other bench
marks use the Speculator kernel. We first ran a read-only micro-benchmark thgateps
In theno replication configuration, the NFS client uses for a common string within the Linux headers. The total
a thin UDP relay on the local machine that stands in forsize of the searched files is about 9.1 MB. Most requests

6.5 NFS: Read-only micro-benchmark
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Figure 8: TheApache build NFS benchmark measures how long it takes to compile and lpdche 2.0.48.

in this benchmark are read-only and are optimized to circomplete, but client speculation still speeds up run time
cumvent agreement. by 6.03x.

Figure 5 shows that PBFT takes 2:06nger to com- . :
plete than PBFT-CS at 15 ms. O-reply speculation lets th((a':"8 NFS: Apache build macro-benchmark
client avoid blocking when revalidating a file after open- Finally, we ran a benchmark that compiles and links
ing it. With PBFT-CS, we can additionally read from Apache 2.0.48. This emulates the standard Andrew-style
a file without delay: a nearby replica supplies all the benchmark that has been widely used in the PBFT liter-
speculative data. Without a nearby replica (in uniformature. This is intended to model a realistic and common
topology), 1-reply speculation is not beneficial since op-workload, where speculation allows significant compu-
timized reads complete at about the same time the clierftion to be overlapped with I/0.
gets its first reply. Within the primary-local topology, PBFT takes up to
5.0x longer to complete than PBFT-CS (Figure 8). In
the uniform topology, PBFT takes up to Z2onger than
We next ran a write-only micro-benchmark that writes PBFT-CS. Since files are often reused many times during
3.9 MB into an NFS file (Figure 6). All writes are issued the build process, there is less opportunity to benefit from
asynchronously by the file system, and the client onlyl-reply speculation. However, the relative difference in
blocks when the file is closed. In this case, speculation iperformance degradation as latency increases is still sig-
not needed to increase the parallelism of the system. nificant. With a co-located primary, PBFT-CS becomes

There are a very small number of read requests in thi#.3x slower as delay increases to 15 ms, while PBFT
benchmark, issued when first opening a file, so thereslows down by a factor of 25.
is no practical opportunity to use 1-reply speculation.6
Speculation at 2.5 ms reduces the benchmark run time’
by only 6-7%. We found that within each latency (ir- To measure the cost of speculation failures, we mod-
respective of topology), there is no statistical differenc ified our PBFT-CS relay to inject faulty digests into

between PBFT+0-spec and PBFT-CS. early replies, simulating a primary that returns corrupted
replies at a rate of 1%. Any speculation based on a

corrupted reply will eventually be rolled back, and any
We next ran a read/write micro-benchmark that createslependent requests will be turned into no-ops on good
100 4 KB files in a directory. For each file, the client replicas.
creates and writes to a file; this includes read-only op- The results of this experiment are presented in Fig-
erations to read the directory entries. PBFT-CS neveure 9. We used the Apache build benchmark in the
blocks on any of these operations. primary-local topology. The injected faults were respon-
In the primary-local topology, PBFT takes up t0xd9 sible for slowdowns in PBFT-CS of 3%, 9%, and 29% at
longer to complete than PBFT-CS (Figure 7). Further-0 ms, 2.5 ms, and 15 ms delay respectively.
more, PBFT-CS shows a resilience to changes in latency These slowdowns are not identical because a client
as it increases from 0-15 ms: PBFT-CS execution timemay have a greater number of requests in the pipeline
doubles while PBFT takes 59longer. On the primary- for completion at a 15 ms delay than at a 0 ms delay.
remote and uniform topologies, operations take longer tdoVhen one request fails, nearly all outstanding requests

6.6 NFS: Write-only micro-benchmark

9 Cost of failure/ faulty primary

6.7 NFS: Read/write micro-benchmark
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30 [ PBFT-CS (no fail) .l concept that has been successfully applied in hardware
PBFT-CS (1% fail) architecture [15, 17, 35], distributed simulations [19],
. [ PBFT file I/0O [10, 16], configuration management [36], dead-
£20 lock detection [26], parallelizing security checks [29],
£ transaction processing [20] and surviving software fail-
g ures [12, 31]. This work contributes by applying specu-
=10 lation to another domain, replicated state machines.
There has also been extensive prior work in the de-
l_d_| velopment of replicated state machines, both in the fail-
0 = stop [24, 30, 34] and Byzantine [1, 8, 11, 21, 22, 32, 37]
0 2.5 15 failure models. While Byzantine fault tolerance in par-
Network delay (ms) ticular has been an area of active research, it has seen

relatively limited deployment due to its perceived com-
Figure 9: For the Apache build benchmark in the plexity and performance limitations.
primary-local topology, PBFT-CS is at worst 29% slower oy client-side speculation techniques apply equally
when 1% of its speculations fail. well to reducing latency in both fail-stop and Byzantine
fault tolerance protocols. However, they are particularly

. i . useful for protocols that tolerate Byzantine faults due to
also fail. We observed that 1% of our speculations failed, o higher latencies of such protocols.

directly, and an additional 1%, 4%, and 5% of specula-
tions (at 0 ms, 2.5 ms, and 15 ms respectively) failed duetin

to their dependencies. These extra requests added unn & phases of replica-to-replica agreement to order each

ezsary Ioadl_to tthe repltlca“s.bBylf xelcutmg more rteqfuetstts ! peration. Several systems since PBFT have aimed to re-
advance, clients must rofl back a farger amount ot State. cq the latency in ordering client operations, typically

As discussed in section 3.3, once a client detects thafy, optimizing for the no-failure case [22] or for work-
1% of requests are failing, it can stop trusting the primary|yads with few concurrent writes [1, 11].

to provide good first replies and disable its own specula- Byzantine quorum state machine replication protocols

tion. If replies are signed, each primary can cause only & ,., as Q/U [1] build upon earlier work in Byzantine
si_ngle fa?led speculation,_ and the resulting view Changeﬁuorum agreement [3, 4, 13, 27], and provide lower la-
will dominate recovery time. For reference, over 100 g0 the optimal case. Q/U is able to respond to write
fa!led speculations in this benchmark result from a 1%requests in a single phase, provided that there are no
failure rate. write operations by other clients that modify the service
7 Reated work state; incoqsistent state caused _by other clients recaires
costly repair protocol. HQ [11] aimed to reduce the cost
This paper contributes the first detailed design for apply-of repair, and reduces the number of replicas required in
ing client speculative execution to replicated state maa Byzantine Quorum system frofif +1to 3f 41, but it
chine protocols. It also provides the first design and im-introduces an additional phase to the optimized protocol.
plementation that uses client speculation to hide latency Agreement protocols that use a primary replica are
in PBFT [8]. able to batch multiple requests into a single agreement
Speculator [28] was originally used to hide latency in operation, greatly reducing the overhead of the proto-
distributed file systems, and thus our work shares manyol and increasing throughput. While our protocol ap-
of Speculator’s original goals. Speculator’s distributedplies to both quorum and agreement protocols, the higher
file system application assumes the existence of a certhroughput offered by batched agreement, along with re-
tral file server that always knows ground truth. No suchsilience during concurrent write workloads, makes them
entity exists in a replicated state machine. For instancea better match for our techniques.
non-faulty replicas may disagree about the ordering of Our work on client speculation complements the
read-only requests as discussed in Section 3.2.2. Prior teerver-side use of speculation in Zyzzyva [22]. In
this paper, Speculator was only used to speculate on zeryzzyva,replicas execute operations speculatively based
replies. The possibility of also speculating on a singleon an ordering provided by the primary, while in our sys-
reply opens up several potential protocol optimizationstemclients speculate based on an early response from the
that we have explored, including the possibility of gen-primary (or on 0 replies), with replicas executing only
erating early replies and optimizing agreement protocolscommitted operations. These two approaches are com-
for throughput. plementary. Client speculation allows a client to issue a
Speculative execution is a general computer sciencsubsequent operation after only a single phase of com-

PBFT [8] provides a canonical example of a Byzan-
e fault-tolerant replicated state machine, using multi
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munication with the primary, which is especially helpful [2] AviziEnis, A. The N-Version Approach to Fault-
for geographically dispersed deployments where some  Tolerant Software.|EEE Transactions on Software En-
replicas are far from the client. Server speculation speeds ~ gineering SE-11, 12 (December 1985), 1491-1501.

up how fast replicas can supply a consensus responsgs] Ben-Or, M. Another advantage of free choice (ex-

to the client, which would allow clients in our system tended abstract): Completely asynchronous agreement
to commit speculations faster. While we have evalu- protocols. InProceedings of the second annual ACM sym-
ated client speculation on the PBFT protocol, it would posium on Principles of distributed computing (PODC
apply equally well to Zyzzyva, where the client can re- '83) (New York, NY, USA, 1983), ACM, pp. 27-30.

ceive early speculativand consensus responses, in the [4] BracHa, G., AND TOUEG, S. Resilient consensus pro-
absence of failures. tocols. InProceedings of the second annual ACM sympo-

: sium on Principles of distributed computing (PODC ’83)
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