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Abstract
Replicated state machines are an important and widely-
studied methodology for tolerating a wide range of
faults. Unfortunately, while replicas should be dis-
tributed geographically for maximum fault tolerance,
current replicated state machine protocols tend to mag-
nify the effects of high network latencies caused by ge-
ographic distribution. In this paper, we examine how to
use speculative execution at the clients of a replicated
service to reduce the impact of network and protocol la-
tency. We first give design principles for using client
speculation with replicated services, such as generating
early replies and prioritizing throughput over latency. We
then describe a mechanism that allows speculative clients
to make new requests through replica-resolved specula-
tion and predicated writes. We implement a detailed case
study that applies this approach to a standard Byzantine
fault tolerant protocol (PBFT) for replicated NFS and
counter services. Client speculation trades in 18% max-
imum throughput to decrease the effective latency under
light workloads, letting us speed up run time on single-
client micro-benchmarks 1.08–19× when the client is
co-located with the primary. On a macro-benchmark, re-
duced latency gives the client a speedup of up to 5×.

1 Introduction
As more of society depends on services running on com-
puters, tolerating faults in these services is increasingly
important. Replicated state machines [34] provide a gen-
eral methodology to tolerate a wide variety of faults,
including hardware failures, software crashes, and ma-
licious attacks. Numerous examples exist for how to
build such replicated state machines, such as those based
on agreement [8, 11, 22, 25] and those based on quo-
rums [1, 11].

For replicated state machines to provide increased
fault tolerance, the replicas should fail independently.
Various aspects of failure independence can be achieved
by using multiple computers, independently written soft-

ware [2, 33], and separate administrative domains. Geo-
graphic distribution is one important way to achieve fail-
ure independence when confronted with failures such as
power outages, natural disasters, and physical attacks.

Unfortunately, distributing the replicas geographically
increases the network latency between replicas, and
many protocols for replicated state machines are highly
sensitive to latency. In particular, protocols that toler-
ate Byzantine faults must wait for multiple replicas to
reply, so the effective latency of the service is limited
by the latency of the slowest replica being waited for.
Agreement-based protocols further magnify the effects
of high network latency because they use multiple mes-
sage rounds to reach agreement. Some implementations
may also choose to delay requests and batch them to-
gether to improve throughput.

Our work uses speculative execution to allow clients
of replicated services to be less sensitive to high laten-
cies caused by network delays and protocol messages.
We observe that faults are generally rare, and, in the ab-
sence of faults, the response from even a single replica
is an excellent predictor of the final, collective response
from the replicated state machine. Based on this observa-
tion, clients in our system can proceed after receiving the
first response, thereby hiding considerable latency in the
common case in which the first response is correct, es-
pecially if at least one replica is located nearby. When
responses are completely predictable, clients can even
continue before they receive any response.

To provide safety in the rare case in which the first
response is incorrect, a client in our system may only
continue executingspeculatively, until enough responses
are collected to confirm the prediction. By tracking all
effects of the speculative execution and not externaliz-
ing speculative state, our system can undo the effects of
the speculation if the first response is later shown to be
incorrect.

Because client speculation hides much of the la-
tency of the replicated service from the client, replicated
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servers in our system are freed to optimize their behavior
to maximize their throughput and minimize load, such as
by handling agreement in large batches.

We show how client speculation can help clients of
a replicated service tolerate network and protocol la-
tency by adding speculation to the Practical Byzantine
Fault Tolerance (PBFT) protocol [8]. We demonstrate
how performance improves for a counter service and an
NFSv2 service on PBFT from decreased effective latency
and increased concurrency in light workloads. Specula-
tion improves the client throughput of the counter service
2–58× across two different network topologies. Specu-
lation speeds up the run time of NFS micro-benchmarks
1.08–19× and up to 5× on a macro-benchmark when
co-locating a replica with the client. When replicas are
equidistant from each other, our benchmarks speed up by
1.06–6× and 2.2×, respectively. The decrease in latency
that client speculation provides does have a cost: under
heavy workloads, maximum throughput is decreased by
18%.

We next describe our general approach to adding client
speculation to a system with a replicated service.

2 Client speculation in replicated services

2.1 Speculative execution

Speculative execution is a general latency-hiding tech-
nique. Rather than wait for the result of a slow operation,
a computer system may instead predict the outcome of
that operation, checkpoint its state, and speculatively ex-
ecute further operations using the predicted result. If the
speculation is correct, the checkpoint is committed and
discarded. If the speculation is incorrect, it is aborted,
and the system rolls back its state to the checkpoint and
re-executes further operations using the correct result.

In general, speculative execution is beneficial only if
the time to checkpoint state is less than the time to per-
form the operation that generates the result. Further, the
outcome of that operation must be predictable. Incorrect
speculations waste resources since all work that depends
on a mispredicted result is thrown away. This waste low-
ers throughput, especially when multiple entities are par-
ticipating in a distributed system, since the system might
have been able to service other entities in lieu of doing
work for the incorrect speculation. Thus, the decision of
whether or not to speculate on the result of an operation
often boils down to determining which operations will be
slow and which slow operations have predictable results.

2.2 Applicability to replicated services

Replicated services are an excellent candidate for client-
based speculative execution. Clients of replicated state
machine protocols that tolerate Byzantine faults must
wait for multiple replicas to reply. That may mean wait-
ing for multiple rounds of messages to be exchanged

among replicas in an agreement-based protocol. If repli-
cas are separated by geographic distances (as they should
be in order to achieve failure independence), network
latency introduces substantial delay between the time a
client starts an operation and the time the client receives
the reply that commits the operation. Thus, there is sub-
stantial time available to benefit from speculative execu-
tion, especially if one replica is located near the client.

Replicated services also provide an excellent predictor
of an operation’s result. Under the assumption that faults
are rare, a client’s request will generate identical replies
from every replica, so the first reply that a client receives
is an excellent predictor of the final, collective reply from
the replicated state machine (which we refer to as the
consensus reply). After receiving the first reply to any
operation, a client can speculatebased on 1 reply with
high confidence. For example, when an NFS client tries
to read an uncached file, it cannot predict what data will
be returned, so it must wait for the first reply before it
can continue with reasonable data.

The results of some remote operations can be pre-
dicted even before receiving any replies; for instance, an
NFS client can predict with high likelihood of success
that file system updates will succeed and that read oper-
ations will return the same (possibly stale) values in its
cache [28]. For such operations, a client may speculate
based on 0 replies since it can predict the result of a re-
mote operation with high probability.

2.3 Protocol adjustments

Based on the above discussion, it becomes clear that
some replicated state machine protocols will benefit
more from speculative execution than others. For this
reason, we propose several adjustments to protocols that
increase the benefit of client-based speculation.

2.3.1 Generate early replies

Since the maximum latency that can be hidden by spec-
ulative execution, in the absence of 0-reply speculation,
is the time between when the client receives the first re-
ply from any replica and when the client receives enough
replies to determine the consensus response, a protocol
should be designed to get the first reply to the client as
quickly as possible. The fastest reply is realized when
the client sends its request to the closest replica, and that
replica responds immediately. Thus, a protocol that sup-
ports client speculation should have one or more replicas
immediately respond to a client with the replica’s best
guess for the final outcome of the operation, as long as
that guess can accurately predict the consensus reply.

Assuming each replica stores the complete state of the
service, the closest replica can always immediately per-
form and respond to a read-only request. However, that
reply is not guaranteed to be correct in the presence of
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concurrent write operations. It could be wrong if the
closest replica is behind in the serial order of operations
and returns a stale value, or in quorum protocols where
the replica state has diverged and is awaiting repair [1].
We describe optimizations in Section 3.2.2 that allow
early responses from any replica in the system, along
with techniques to minimize the likelihood of an incor-
rect speculative read response.

It is more difficult to allow any replica to immediately
execute a modifying request in an agreement protocol.
Backup replicas depend on the primary replica to de-
cide a single ordering of requests. Without waiting for
that ordering, a backup could guess at the order, spec-
ulatively executing requests as it receives them. How-
ever, it is unlikely that each replica will perceive the same
request ordering under workloads with concurrent writ-
ers, especially with geographic distribution of replicas.
Should the guessed order turn out wrong (beyond ac-
ceptable levels [23]), the replica must roll back its state
and re-execute operations in the committed order, hurt-
ing throughput and likely causing its response to change.

For agreement protocols like PBFT, a more elegant so-
lution is to have only the primary execute the request
early and respond to the client. As we explain in Sec-
tion 3.3, such predictions are correct unless the primary
is faulty. This solution enables us to avoid speculation or
complex state management on the replicas that would re-
duce throughput. Used in this way, the primary should be
located near the most active clients in a system to reduce
their latency.

2.3.2 Prioritize throughput over latency

There exist a myriad of replicated state machine proto-
cols that offer varying trade-offs between throughput and
latency [1, 8, 11, 22, 30, 32, 37]. Given client support for
speculative execution, it is usually best to choose a pro-
tocol that improves throughput over one that improves
latency. The reason is that speculation can do much to
hide replica latency but little to improve replica through-
put.

As discussed in the previous section, speculative ex-
ecution can hide the latency that occurs between the re-
ceipt of an early reply from a replica and the receipt of
the reply that ends the operation. Thus, as long as a spec-
ulative protocol provides for early replies from the clos-
est or primary replica, reducing the latency of the overall
operation does not ordinarily improve user-perceived la-
tency.

Speculation can only improve throughput in the case
where replicas are occasionally idle by allowing clients
to issue more operations concurrently. If the replicas are
fully loaded, speculation may even decrease throughput
because of the additional work caused by mispredictions
or the generation of early replies. Thus, it seems pru-

dent to choose a protocol that has higher latency but
higher potential throughput, perhaps through batching,
and stable performance under write contention [8, 22],
rather than protocols that optimize latency over through-
put [1, 11].

An important corollary of this observation is that client
speculation allows one to choose simpler protocols. With
speculation, a complex protocol that is highly optimized
to reduce latency may perform approximately the same
as a simpler, higher latency protocol from the viewpoint
of a user. A simpler protocol has many benefits, such
as allowing a simpler implementation that is quicker to
develop, is less prone to bugs, and may be more secure
because of a smaller trusted computing base.

2.3.3 Avoid speculative state on replicas

To ensure correctness, speculative execution must avoid
output commits that externalize speculative output (e.g.,
by displaying it to a user) since such output can not be
undone once externalized. The definition of what consti-
tutes external output, however, can change. For instance,
sending a network message to another computer would
be considered an output commit if that computer did not
support speculation. However, if that computer could be
trusted to undo, if necessary, any changes that causally
depend on the receipt of the message, then the message
would not be an output commit. One can think of the
latter case as enlarging theboundary of speculation from
just a single computer to encompass both the sender and
receiver.

What should be the boundary of speculation for a
replicated service? At least three options are possible:
allow all replicas and clients of the service to share spec-
ulative state, allow replicas to share speculative state with
individual clients but not to propagate one client’s spec-
ulative state to other clients, and disallow replicas from
storing speculative state.

Our design uses the third option, with the smallest
boundary of speculation, for several reasons. First, the
complexity of the system increases as more parts partic-
ipate in a speculation. The system would need to use
distributed commit and rollback [14] to involve replicas
and other clients in the speculation, and the interaction
between such a distributed commit and the normal repli-
cated service commit would need to be examined care-
fully. Second, as the boundary of speculation grows
larger, the cost of a misprediction is higher; all repli-
cas and clients that see speculative state must roll back
all actions that depend on that state when a prediction is
wrong. Finally, it may be difficult to precisely track de-
pendencies as they propagate through the data structures
of a replica, and any false dependencies in a replica’s
state may force clients to trust each other in ways not re-
quired by the data they share in the replicated service.
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For example, if the system takes the simple approach of
tainting the entire replica state, then one client’s mispre-
diction would force the replica to roll back all later oper-
ations, causing unrelated clients to also roll back.

2.3.4 Use replica-resolved speculation

Even with this small boundary of speculation, we would
still like to allow clients to issue new requests that de-
pend on speculative state (which we callspeculative re-
quests). Speculative requests allow a client to continue
submitting requests when it would otherwise be forced to
block. These additional requests can be handled concur-
rently, increasing throughput when the replicas are not
already fully saturated.

One complication here is that, to maintain correctness,
if one of the prior operations on which the client is spec-
ulating fails, any dependent operations that the client is-
sues must also abort. There is currently no mechanism
for a replica to determine whether or not a client received
a correct speculative response. Thus, the replica is un-
able to detect whether or not to execute subsequent de-
pendent speculative requests.

To overcome this flaw, we proposereplica-resolved
speculation through predicated writes, in which replicas
are given enough information to determine whether the
speculations on which requests depend will commit or
abort. With predicated writes, an operation that modifies
state includes a list of the active speculations on which
it depends, along with the predicted responses for those
speculations. Replicas log each committed response they
send to clients and compare each predicted response in
a predicated write with the actual response sent. If all
predicated responses match the saved versions, the spec-
ulative request is consistent with the replica’s responses,
and it can execute the new request. If the responses do
not match, the replica knows that the client will abort
this operation when rolling back a failed speculation, so
it discards the operation. This approach assumes a pro-
tocol in which all non-faulty replicas send the same re-
sponse to a request.

Note that few changes may need to be made to a pro-
tocol to handle speculative requests that modify data. An
operationO that depends on a prior speculationOs, with
predicted responser, may simply be thought of as a sin-
gle deterministic request to the replicated service of the
predicated form:if response(Os) = r, then do O.
This predicate must be enforced on the replicas. How-
ever, as shown in Section 5, predicate checking may be
performed by a shim layer between the replication pro-
tocol and the application without modifying the protocol
itself.

Figure 1: PBFT-CS Protocol Communication. The early
response from the primary is shown with a dashed hollow
arrow, which replaces its response from the Reply phase
(dotted filled arrow) in PBFT.

3 Client speculation for PBFT
In this section, we apply our general strategy for support-
ing client speculative execution in replicated services to
the Practical Byzantine Fault Tolerance (PBFT) protocol.
We call the new protocol we develop PBFT-CS (CS de-
notes the additional support for client speculation).

3.1 PBFT overview

PBFT is a Byzantine fault tolerant state machine repli-
cation protocol that uses a primary replica to assign
each client request a sequence number in the serial or-
der of operations. The replicas run a three-phase agree-
ment protocol to reach consensus on the ordering of each
operation, after which they can execute the operation
while ensuring consistent state at all non-faulty repli-
cas. Optionally, the primary can choose and attachnon-
deterministic data to each request (for NFS, this contains
the current time of day).

PBFT requires3f + 1 replicas to handlef concurrent
faulty replicas, which is the theoretical minimum [5].
The protocol guarantees liveness and correctness with
up tof failures, and runs aview change sub-protocol to
move the primary to another replica in the case of a bad
primary.

The communication pattern for PBFT is shown in Fig-
ure 1. The client normally receives a commit after five
one-way message delays, although this may be short-
ened to four delays by overlapping thecommit and re-
ply phases using atentative execution optimization [8].
To reduce the overhead of the agreement protocol, the
primary may collect a number of client requests into a
batch and run agreement once on the ordering of opera-
tions within this batch.

In our modified protocol, PBFT-CS, the primary re-
sponds immediately to client requests, as illustrated by
the dashed line in Figure 1.

3.2 PBFT-CS base protocol

In both PBFT and PBFT-CS, the client sends each re-
quest to all replicas, which buffer the request for execu-
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tion after agreement. Unlike the PBFT agreement proto-
col, the primary in PBFT-CS executes an operation im-
mediately upon receiving a request and sends the early
reply to the client as a speculative response. The primary
then forms a pre-prepare message for the next batch of
requests and continues execution of the agreement proto-
col. Other replicas are unmodified and reply to the client
request once the operation has committed.

Since the primary determines the serial ordering of all
requests, under normal circumstances the client will re-
ceive at leastf committed responses from the replicas
matching the primary’s early response. This signifies that
the speculation was correct because the request commit-
ted with the same value as the speculative response. If
the client receivesf + 1 matching responses that differ
from the primary’s response, the client rolls back the cur-
rent speculation and resumes execution with the consen-
sus response.

3.2.1 Predicated writes

A PBFT-CS client can issue subsequent requests imme-
diately after predicting a response to an earlier request,
rather than waiting for the earlier request to commit. To
enable this without requiring replicas themselves to spec-
ulate and potentially roll back, PBFT-CS ensures that a
request that modifies state does not commit if it depends
on the value of any incorrect speculative responses. To
meet this requirement, clients must track and propagate
the dependencies between requests.

For example, consider a client that reads a value stored
in a PBFT-CS database (op1), performs some computa-
tion on the data, then writes the result of the computa-
tion back to the database (op2). If the primary returns
an incorrect speculative result forop1, the value to be
written inop2 will also be incorrect. Whenop1 eventu-
ally commits with a different value, the client will fail its
speculation and resume operation with the correct value.
Although the client cannot undo the send ofop2, depen-
dency tracking preventsop2 from writing its incorrect
value to the database.

Each PBFT-CS client maintains a log of the digestsdT

of each speculative response issued at logical timestamp
T . When an operation commits, its corresponding digest
is removed from the tail of the log. If an operation aborts,
its digest is removed from the log, along with the digests
of any dependent operations.

Clients append any required dependencies to each
speculative request, of the form{c, 〈ti, di〉, ...} for client
c and each digestdi at timestampti.

Replicas also store a log of digests for each client with
the committed response for each operation. The replica
executes a speculative request only if all digests in the re-
quest’s dependency list match the entries in the replica’s
log. Otherwise, the replica executes a no-op in place of

the operation.
It is infeasible for replicas to maintain an unbounded

digest log for each client in a long-running system, so
PBFT-CS truncates these logs periodically. Replicas
must make a deterministic decision on when to truncate
their logs to ensure that non-faulty replicas either all ex-
ecute the operation or all abort it. This is achieved by
truncating the logs at fixed deterministic intervals.

If a client issues a request containing a dependency
that has since been discarded from the log, the repli-
cas abort the operation, replacing it with a no-op. The
client recognizes this scenario when receiving a consen-
sus response that contains a specialretry result. It retries
execution once all its dependencies have committed. In
practice an operation will not abort due to missing de-
pendencies, provided that the log is sufficiently long to
record all operations issued in the time between a replica
executing an operation and a quorum of responses being
received by the client.

3.2.2 Read-only optimization

Many state machine replication protocols provide a read-
only optimization [1, 8, 11, 22] in which read requests
can be handled by each replica without being run through
the agreement protocol. This allows reads to complete in
a single communication round, and it reduces the load on
the primary.

In the standard optimization, a client issues optimized
read requests directly to each replica rather than to the
primary. Replicas execute and reply to these requests
without taking any steps towards agreement. A client
can continue after receiving2f + 1 matching replies.
Because optimized reads are not serialized through the
agreement protocol, other clients can issue conflicting,
concurrent writes that prevent the client from receiving
enough matching replies. When this happens, the client
retransmits the request through the agreement protocol.
This optimization is beneficial to workloads that con-
tain a substantial percentage of read-only operations and
exhibit few conflicting, concurrent writes. Importantly,
when a backup replica is located nearer a client than the
primary, that replica’s reply will typically be received by
the client before the primary’s.

PBFT-CS cannot use this standard optimization with-
out modification. A problem arises when a client is-
sues a speculative request that depends on the predicted
response to an optimized read request. PBFT-CS re-
quires all non-faulty replicas to make a deterministic de-
cision when verifying the dependencies on an operation.
However, since optimized reads arenot serialized by the
agreement protocol, one non-faulty replica may see a
conflicting write before responding to an optimized read,
while another non-faulty replica sees the write after re-
sponding to the read. These two non-faulty replicas will
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thus respond to the optimized read with different values,
and they will make different decisions when they verify
the dependencies on a later speculative request. A non-
faulty replica that sent a response that matches the first
speculative response received by the client will commit
the write operation, while other non-faulty replicas will
not. Hence, writes may not depend on uncommitted op-
timized reads. This is enforced at each replica by not
logging the response digest for such requests.

We address this problem by allowing a PBFT-CS
client to resubmit optimized read requests through the
full agreement protocol, forcing the replicas to agree on
a common response. When write conflicts are low, the re-
submitted read is likely to have the same reply as the ini-
tial optimized read, so a speculative prediction is likely
to still be correct. After performing this procedure, we
can send any dependent write requests, as they no longer
depend on an optimized request.

There are three issues that must be considered for a
read request to be submitted using this optimization.

• The request cannot read uncommitted state.

• The client should not follow a read with a write.

• The reply should not be completely predictable.
The first issue is required for consistency. A client

cannot optimize a read request for a piece of state before
all its write requests for that state are committed. Other-
wise, it risks reading stale data when a sufficient number
of backup replicas have not yet seen the client’s previous
writes. The data dependency tracking required to imple-
ment this policy is also used to propagate speculations, so
no extra information needs to be maintained. Reads that
do depend on uncommitted data may still be submitted
through the agreement protocol as with write requests.
Should a client desire a simpler policy for ensuring cor-
rectness, it can disable the read-only optimization while
it has any uncommitted writes.

Second, consider a client that reads a value, performs
a computation, and then writes back a new value. If the
read request is initially sent optimized, issuing the write
will force the read to be resubmitted. The “optimization”
results in additional work. Clients that anticipate follow-
ing a read by a write should decline to optimize the read.

Finally, if a client can predict the outcome of the re-
quest before receiving any replies (for instance, if it pre-
dicts that a locally-cached value has not become stale),
then it should submit the request through the normal
agreement protocol. Since the client does not need to
wait for any replies, it is not hurt by the extra latency of
waiting for agreement.

3.3 Handling failures

Speculation optimizes for reduced latency in the non-
failure case, but it is important to ensure that correct-
ness and liveness are maintained in the presence of faulty

replicas. Failed speculations also increase the latency
of a client’s request, forcing it to roll back after having
waited for the consensus response, and hurt throughput
by forcing outstanding requests to become no-ops. It is
important for our protocol to handle faults correctly in a
way that still tries to preserve performance.

A speculation will fail on a client when the first re-
ply it receives to a request does not match the consensus
response. There are three cases in which this might hap-
pen:

• The most common case occurs when a write issued
by another client conflicts with an optimized read.
In an extreme instance, one replica’s early reply
could contain the stale data while all other replicas
reply with current data.

• The second case occurs when there is a view
change. PBFT ensures that committed requests
will be ordered the same in the new view, but
the client is speculating on uncommitted requests
that the new replica could order differently. View
changes may be the result of a bad primary, or they
may be triggered by network conditions or proac-
tive recovery [9].

• The third case occurs when the primary is faulty,
and it either returns an incorrect speculative re-
sponse or serializes a request differently when run-
ning the agreement protocol. We next examine this
scenario further.

It is trivial for a client to detect a faulty primary: a
request’s early reply from the primary and the consensus
reply will be in the same view and not match. If signed
responses are used, the primary’s bad reply can be given
to other replicas as a proof of misbehavior. However, if
simple message authentication codes (MACs) are used,
the early reply cannot be used in this way since MACs
do not provide non-repudiation.

The simplest solution to handling faults with MACs is
for a client to stop speculating if the percentage of failed
speculations it observes surpasses a threshold. PBFT-
CS currently uses an arbitrary threshold of 1%. If a
client observes that the percentage of failed speculations
is greater than 1% over the pastn early replies provided
by a replica, it simply ceases to speculate on subsequent
early replies from that replica. Although it will not spec-
ulate on subsequent replies, it can still track their accu-
racy and resume speculating on further replies if the per-
centage falls below a threshold. Our experimental results
verify that at this threshold, PBFT-CS is still effective at
reducing the average latency under light workloads.

3.4 Correctness

The speculative execution environment and PBFT proto-
col used in our system both have well-established cor-
rectness guarantees [7, 28]. We thus focus our attention
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on the modifications made to PBFT, to ensure that this
protocol remains correct.

Our modified version of PBFT differs from the origi-
nal in several key ways:

• A client may be sent a speculative response that
differs from the final consensus value.

• A client may submit an operation that depends on
a failed speculation.

• The primary may execute an operation before it
commits.

We evaluate each modification independently.

Incorrect speculation A bad primary may send an in-
correct speculative response to a client, in that it differs
on the value or ordering of the final consensus value. We
also consider in this class an honest primary that sends a
speculative response to a client but is unable to complete
agreement on this response due to a view change. In ei-
ther case, the client will only see the consensus response
once the operation has undergone agreement at a quorum
of replicas. If the speculative response was incorrect, it
is safe for the client to roll back the speculative execu-
tion and re-run using the consensus value, since PBFT
ensures that all non-faulty replicas will agree on the con-
sensus value.

Dependent operations A further complication arises
when the client has issued subsequent requests that de-
pend on the value of a speculative response. Here, the
speculation protocol on the client ensures that it rolls
back execution of any operations that have dependencies
on the failed speculation. We must ensure that all valid
replicas make an identical decision to abort each depen-
dent operation by replacing it with a no-op.

Replicas maintain a log of the digests for each com-
mitted operation and truncate this log at deterministic
intervals so that all non-faulty replicas have the same
log state when processing a given operation. Predicated
writes in PBFT-CS allow the client to express the specu-
lation dependencies to the replicas. A non-faulty replica
will not execute any operation that contains a depen-
dency that does not match the corresponding digest in
the log, or that does not have a matching log entry. Since
the predicated write contains the same information used
by the client when rolling back dependent operations, the
replicas are guaranteed to abort any operation aborted by
the client. If a client submits a dependency that has since
been truncated from the log, it will also be aborted.

The only scenario where replicas are unable to de-
terministically decide whether a speculative response
matches its agreed-upon value is when a speculative re-
sponse was produced using the read-only optimization.
Here, different replicas may have responded with differ-
ent values to the read request. We explicitly avoid this
case by making it an error to send a write request that de-

pends on the reply to an optimized read request; correct
clients will never issue such a request. Replicas do not
store the responses to optimized reads in their log and
hence always ignore any request sent by a faulty client
with a dependency on an optimized read.

Speculative execution In our modified protocol, the
primary executes client requests immediately upon their
receipt, before the request has undergone agreement. The
agreement protocol dictates that all non-faulty replicas
commit operations in the order proposed by the primary,
unless they execute a view change to elect a new pri-
mary. After a view change, the new primary may reorder
some uncommitted operations executed by the previous
primary, however, the PBFT view change protocol en-
sures that any committed operations persist into the new
view. It is safe for the old primary to restore its state to
the most recent committed operation since any incorrect
speculative response will be rolled back by clients where
necessary.

4 Discussion and future optimizations
In this section, we further explore the protocol design
space for the use of client speculation with PBFT. We
compare and contrast possible protocol alternatives with
the PBFT-CS protocol that we have implemented.

4.1 Alternative failure handling strategies

We considered two alternative strategies for dealing with
faulty primaries. First, we could allow clients to request
a view change without providing a proof of misbehav-
ior. This scheme would seem to significantly compro-
mise liveness in a system containing faulty clients since
they can force view changes at will. However, this is an
existing problem in BFT state machine replication in the
absence of signatures. A bad client in PBFT is always
able to force a view change by sending a request to the
primary with a bad authenticator that appears correct to
the primary or by sending different requests to different
replicas [7]. We could mitigate the damage a given bad
client can do by having replicas make a local decision to
ignore all requests from a client that ‘framed’ them. In
this way a bad client can not initiate a view change after
incriminatingf primaries.

Alternatively, we could require signatures in commu-
nications between client and replicas. This is the most
straight-forward solution, but entails significant CPU
overhead. Compared to these two alternative designs,
we chose to have PBFT-CS revert to a non-speculative
protocol due to the simplicity of the design and higher
performance in the absence of a faulty primary.

4.2 Coarse-grained dependency tracking

PBFT-CS tracks and specifies the dependencies of a
speculative request at fine granularity. Thus, message
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size and state grow as the average number of dependen-
cies for a given operation increases. To keep message
size and state constant, we could use coarser-grained de-
pendencies.

We could track dependencies on a per-client basis by
ensuring that a replica executes a request from a client at
logical timestampT only if all outstanding requests from
that client prior to timeT have committed with the same
value the client predicted.

Instead of maintaining a list of dependencies, each
client would instead store a hash chained over all consen-
sus responses and subsequent speculative responses. The
client would append this hash to each operation in place
of the dependency list. The client would also keep an-
other hash chained only over consensus responses, which
it would use to restore its dependency state after rolling
back a failed speculation.

Each replica would maintain a hash chained over re-
sponses sent to the client and would execute an opera-
tion if the hash chain in the request matches its record of
responses. Otherwise, it would execute a no-op.

We chose not to use this optimization in PBFT-CS
since the use of chained hashes creates dependencies be-
tween all operations issued by a client even when no
causal dependencies exist. This increases the cost of a
failed speculation since the failure of one speculative re-
quest causes all subsequent in-progress speculative oper-
ations to abort. Coarse-grained dependency tracking also
limits the opportunities for running speculative read op-
erations while there are active speculative writes. Since
speculative read responses are not serialized with respect
to write operations, it is likely that the client will insert
the read response in the wrong point in the hash chain,
causing subsequent operations to abort.

4.3 Reads in the past

A read-only request need not circumvent the agree-
ment protocol completely, as described in section 3.2.2.
A client can instead take a hybrid approach for non-
modifying requests: it can submit the request for full
agreement and at the same time have the nearest replica
immediately execute the request.

If the primary happens to be the nearest to the client,
this is not a change from the normal protocol. When an-
other replica is closer, the client can get a lower-latency
first reply, plus having agreement eliminates the second
consideration for optimized reads (in Section 3.2.2), that
a client should not follow a read with a write.

However, this new optimization presents a problem
when there are concurrent writes by multiple clients. A
non-primary replica will execute an optimized request,
and a client will speculate on its reply, in a sequential or-
der that is likely different from the request’s actual order
in the agreement protocol. In essence, the read has been

libbyz spec

shim
NFSD

libbyz spec

shim
NFSD

ReplicasClient

Relay libbyz

Speculator

NFS

Client

Figure 2: Speculative fault-tolerant NFS architecture

executedin the past, at a logical time when the replicas
have not yet processed all operations that are undergoing
agreement but when they still share a consistent state.

We could extend the PBFT-CS read-only optimization
to also allow reads in the past. Under a typical configu-
ration, there is only one round of agreement executing at
any one time, with incoming requests buffered at the pri-
mary to run in the next batch of agreement. If we were to
ensure that all buffered reads are reordered, when possi-
ble, to be serialized at the start of this next batch, it would
be highly likely that no write will come between a read
being received by a replica and the read being serialized
after agreement.

Note that the primary may assign any order to requests
within a batch as long as no operation is placed before
one on which it depends. Recall that a PBFT-CS client
will only optimize a read if the read has no outstanding
write dependencies. Hence, the primary is free to move
all speculative reads to the start of the batch. The primary
executes these requests on a snapshot of the state taken
before the batch began.

5 Implementation
We modified Castro and Liskov’s PBFT library,lib-
byz [8], to implement the PBFT-CS protocol described
in Section 3. We also modified BFS [8], a Byzantine-
fault-tolerant replicated file service based on NFSv2, to
support client speculation. The overall system can be
divided into three parts as shown in Figure 2: the NFS
client, a protocol relay, and the fault-tolerant service.

5.1 NFS client operation

Our client system uses the NFSv2 client module of
the Speculator kernel [28], which provides process-level
support for speculative execution. Speculator supports
fine-grained dependency tracking and checkpointing of
individual objects such as files and processes inside the
Linux kernel. Local file systems are speculation-aware
and can be accessed without triggering an output com-
mit. Speculator buffers external output to the termi-
nal, network, and other devices until the speculations on
which they depend commit. Speculator rolls back pro-
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cess and OS state to checkpoints and restarts execution if
a speculation fails.

To execute a remote NFS operation, Speculator first
attaches a list of the process’s dependencies to the mes-
sage, then sends it to a relay process on the same ma-
chine. The relay interprets this list and attaches the cor-
rect predicates when sending the PBFT-CS request.

The relay brokers communication between the client
and replicas. It appears to be a standard NFS server to
the client, so the client need not deal with the PBFT-CS
protocol. When the relay receives the first reply to a 1-
reply speculation, the reply is logged and passed to the
waiting NFS client. The NFS client recognizes specula-
tive data, creates a new speculation, and waits for a con-
firmation message from the relay. Once the consensus
reply is known, the relay sends either acommit mes-
sage or arollback{reply} message containing the
correct response.

Our implementation speculates based on 0 replies for
GETATTR, SETATTR, WRITE, CREATE, andREMOVE calls.
It can speculate on 1 reply forGETATTR, LOOKUP, and
READ calls. This list includes the most common NFS
operations: we observed that at least 95% of all calls in
all our benchmarks were handled speculatively. Note that
we speculate on both 0 replies and 1 reply forGETATTR

calls. The kernel can speculate as soon as it has attributes
for a file. When the attributes are cached, 0 replies are
needed, otherwise, the kernel waits for 1 reply before
continuing.

5.2 PBFT-CS client operation

Speculation hides latency by allowing a single client to
pipeline many requests; however, our PBFT implemen-
tation only allows for each PBFT-CS client to have a sin-
gle outstanding request at any time. We work around
this limitation by grouping up to 100 logical clients into
a single client process.

NFS with 0-reply speculation requires its requests to
be executed in the order they were issued. A PBFT-CS
client process can tag each request with a sequence num-
ber so that the primary replica will only process requests
from that client process’s logical clients in the correct or-
der. Of course, two different clients’ requests can still be
interleaved in any order by the primary.

To support this additional concurrency, we designed
the client to use an event-driven API. User programs pass
requests to libbyz and later receive two callbacks: one
delivers the first reply and another delivers the consensus
reply. The user program is responsible for monitoring
libbyz’s communication channels and timers.

5.3 Server operation

On the replicas, libbyz implements an event-based server
that performs upcalls into the service when needed: to re-
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Figure 3: Server throughput in a LAN, measured on the
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concurrent requests.

Overhead Source Slowdown
Early replies 8.2%

Larger request 4.1%
Complex client 2.8%

Predicate checking 1.8%

Table 1: Major sources of overhead affecting throughput
for PBFT-CS relative to PBFT.

quest non-deterministic data, to execute requests, and to
construct error replies. The library handles all commu-
nication and state management, including checkpointing
and recovery.

A shim layer is used to manage dependencies on repli-
cas. When writes need to be quashed due to failed specu-
lative dependencies, the shim layer issues a no-op to the
service instead. Thus, the underlying service is not ex-
posed to details of the PBFT-CS protocol.

The primary will batch together all requests it receives
while it is still agreeing on earlier requests. Batch-
ing is a general optimization that reduces the number
of protocol instances that must be run, decreasing the
number of communications and authentication opera-
tions [8, 22, 23, 37]. This implementation imposes a
maximum batch size of 64 requests, a limit our bench-
marks do run up against.

6 Evaluation
In this section, we quantify the performance of our
PBFT-CS implementation. We have implemented a sim-
ple shared counter micro-benchmark and several NFS
micro- and macro-benchmarks.

We compare PBFT-CS against two other Byzan-
tine fault-tolerant agreement protocols: PBFT [8] and
Zyzzyva [22]. PBFT is the base protocol we extend make
use of client speculation. Its overall structure is illus-
trated in Figure 1. We use the tentative reply optimiza-
tion, so each request must go through 4 communication
phases before the client acquires a reply that it can act on.
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Figure 4: Time taken to run 2000 updates using the
shared counter service. The primary-local topology (a)
shows a client located at the same site as the primary.
The uniform topology (b) shows a remote client equidis-
tant from all sites. 0 ms (LAN) times for both graphs are
(in bar order): 0.36 s, 0.27 s, 0.41 s, 0.54 s, and 0.16 s.

PBFT uses an adaptive batching protocol, allowing up to
64 requests to be handled in one agreement instance.

Zyzzyva is a recent agreement protocol that is heavily
optimized for failure-free operation. When all replicas
are non-faulty (as in our experiments), it takes only 3
phases for a client to possess a consensus reply. We run
Kotla et al.’s implementation of Zyzzva, which uses a
fixed batch size. We simulate an adaptive batching strat-
egy by manually tuning the batch size as needed for best
performance.

By comparison, a PBFT-CS client can continue exe-
cuting speculatively after only 2 communication phases.
We expect this to significantly reduce the effective la-
tency of our clients. Note that requests still require 4
phases tocommit, but we can handle those requests con-
currently rather than sequentially. If we limit the number
of in-flight requests to some numbern, we call the pro-
tocol “PBFT-CS (n).”

6.1 Experimental setup

Each replica machine uses a single Intel Xeon 2.8 GHz
processor with 512 MB RAM (sufficient for our appli-
cations). We always evaluate using four replicas without
failures (unless noted). In our NFS comparisons, we use
a single client that is identical in hardware to the replicas.
Our counter service runs on an additional five client ma-
chines using Intel Pentium 4s or Xeons with clock speeds
of 3.06–3.20 GHz and 1 GB RAM. All systems use a
generic Red Hat Linux 2.4.21 kernel.

Our machines use gigabit Ethernet to communicate di-
rectly with a single switch. Experiments using the shared
counter service were performed on a Cisco Catalyst 2970
gigabit switch; NFS used an Intel Express ES101TX

10/100 switch.
Our target usage scenario is a system that consists of

several sites joined by moderate latency connections (but
slower than LAN speeds). Each site has a high-speed
LAN hosting one replica and several clients, and clients
may also be located off-site from any replica. For com-
parison with other agreement protocols, we also consider
using PBFT-CS in a LAN setting where all replicas and
clients are on the same local segment.

Based on the above scenarios, we emulate a simpli-
fied test network using NISTNet [6] that inserts an equal
amount of one-way latency between each site. We let this
inserteddelay be either 2.5 ms or 15 ms.

We also measure performance at clients located in dif-
ferent areas in our scenario. In theprimary-local topol-
ogy, the client is at the same site as the current primary
replica. Theprimary-remote topology considers a client
at different site hosting a backup replica. A client not
present at any site is shown in theuniform topology, and
we let the client have the same one-way latency to all
replicas as between sites.

When comparing against a service with no replication
in a given topology, we always assume that a client at a
site can access its server using only the LAN. A client
not at a site is still subject to added delay.

6.2 Counter throughput

We first examine the throughput of PBFT-CS using the
counter service. Similar to Castro and Liskov’s standard
0/0 benchmark [8], the counter’s request and reply size
are minimal. This service exposes only one operation:
increment the counter and return its new value. Each
reply contains a token that the client must present on its
next request. This does add a small amount of processing
time to each request, but it ensures that client requests
must be submitted sequentially.

Our client is a simple loop that issues a fixed num-
ber of counter updates and records the total time spent.
No state is externalized by the client, so we allow the
client process to implement its own lightweight check-
point mechanism. Checkpoint operations take negligible
time, so our results focus on the characteristics of the
protocol itself rather than our checkpoint mechanism.

We measure throughput by increasing the number of
client processes per machine (up to 17 processes) until
the server appears saturated. Graphs show the mean of at
least 6 runs, and visible differences are statistically sig-
nificant.

Figure 3 shows the measured throughput in a LAN
configuration. We found that in this topology, a sin-
gle PBFT-CS client gains no benefit from having more
than 4 concurrent requests, and we enforce that limit
on all clients. When we have 12 or fewer concur-
rent clients, PBFT-CS has 1.19–1.49× higher through-
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Figure 5:Read-only NFS micro-benchmark performance across different networktopologies. The last three data sets
use 0-reply speculation. At 0 ms, all three topologies are equivalent, so the same data is used for each graph. Theno
rep data show a lower bound for run time. There is only oneno rep data set for primary-local and primary remote
topologies, because the location of the server does not change with increasing latency. For these two graphs, the 0 ms
bar applies to all latencies but is not repeated.

put than Zyzzyva and 1.79–2× higher throughput than
PBFT.

In lightly loaded systems, the servers are not being
fully utilized, and speculating clients can take advantage
of the spare resources to decrease their own effective la-
tency. As the server becomes more heavily loaded, those
resources are no long free to use. As a result, PBFT-CS
reaches its peak throughput before other protocols.

There is a trade-off of throughput for latency: PBFT-
CS shows a peak throughput that is 17.6% lower than
PBFT. We found four fundamental sources of overhead,
summarized in Table 1. First, the client implementa-
tion for PBFT-CS uses an event-driven system to han-
dle several logical clients, needed to support concurrent
requests. This design does lead to a slower client than
the one in PBFT, which can get by with a simpler block-
ing design. Second, we found that having the primary
send early replies increases its time spent blocking while
transmitting. Third, each predicate added to a request
makes the request packet larger, and fourth, those predi-
cates take additional work to verify on each replica.

6.3 Counter latency

We next examine how latency affects client performance
under a light workload when the client is located at dif-
ferent sites. Figure 4 shows the time taken for a single
counter client to issue 2000 requests in different topolo-
gies. In the LAN topology where no delay is added, a
PBFT-CS client is able to complete the benchmark in
33% less time than PBFT, reflecting average run times
of 357 ms and 538 ms respectively. When we increase
the latency between sites, run time becomes dominated
by number of communication phases. With a uniform
topology (Figure 4b), PBFT-CS takes 50% less time than

PBFT and 33% less time than Zyzzyva, and its runtime
is only 1% slower than the unreplicated service. This
matches our intuitive understanding of the protocol be-
havior described at the start of this section.

For PBFT-CS, the critical path is a round-trip commu-
nication with the primary replica. Moving to a primary-
remote topology (bringing one backup replica closer)
does not affect this critical path, and our measurements
show no significant difference between primary-remote
and uniform topologies.

Figure 4a presents results when using a primary-local
topology. As latency increases and backup replicas move
further from the client, performance does not degrade
significantly, since the latency to the primary is fixed.
At 15 ms latency, a client using PBFT takes 58× longer
than with PBFT-CS. The combination of client specu-
lation and a co-located primary achieves much of the
performance benefit of a closely located non-replicated
server, while providing all the guarantees of a geograph-
ically distributed replicated service that tolerates Byzan-
tine faults.

These significant gains are directly attributable to
the increased concurrency possible in the primary-local
topology. When we limit PBFT-CS to only 4 outstanding
requests, the client must then wait on requests to commit,
reintroducing a dependence on communication delay. In
topologies where the client does not have privileged ac-
cess to the primary, as in the uniform topology, limiting
concurrency has little effect.

6.4 NFS

We next examine PBFT-CS applied to an NFS server.
Considering that the NFSv2 protocol is not explicitly
designed for high-latency environments, we compare
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Figure 6:Write-only NFS micro-benchmark.

0 2.5 15
0

5

10

15

20

T
im

e 
(s

ec
)

0 2.5 15
0

5

10

15

20

0 2.5 15
0

5

10

15

20

PBFT
PBFT + 0-spec
PBFT-CS
No rep + 0-spec

Network delay (ms)
(a) Primary-local (b) Primary-remote (c) Uniform

Figure 7:Read/Write NFS micro-benchmark.

against the variation of NFS that uses 0-reply specula-
tion. All benchmarks begin with a freshly-mounted file
system and an empty cache.

Unlike the counter service, this application has over-
head associated with creating, committing, and rolling
back to a checkpoint. Processes may have computation
to perform between requests, and they may need to block
before an output commit.

For comparison with non-speculative systems, we
measure the performance of NFS under PBFT. Using
our speculative NFS protocol, we measure PBFT using
only 0-reply speculation (PBFT + 0-spec) and PBFT-CS.
The difference between these two measurements show
the benefit of 1-reply speculation. As a lower bound, we
also measure the performance of a non-replicated NFS
server that uses 0-reply speculation (No rep + 0-spec).

We use a vanilla kernel for evaluating non-speculative
PBFT with a slight modification that increases the num-
ber of concurrent RPC requests allowed. Other bench-
marks use the Speculator kernel.

In theno replication configuration, the NFS client uses
a thin UDP relay on the local machine that stands in for

the BFT relay.
Our modifications to the NFS client, the relay, and

the replicated service have introduced additional over-
head that is not present in the original PBFT. This inef-
ficiency is particularly apparent in our 0 ms topologies,
where PBFT-CS shows a 1.03–2.18× slowdown relative
to PBFT across all our benchmarks. However, in all
cases at higher latencies, client speculation results in a
clear improvement, and we primarily address these con-
figurations in the following sections.

At the time of publication, we had not yet ported our
NFS server to use the Zyzzyva protocol, so we regret-
fully are unable to provide a direct comparison for these
benchmarks.

All graphs show the mean of at least five measure-
ments. Error bars are shown when the 95% confidence
interval is above 1% of the mean value.

6.5 NFS: Read-only micro-benchmark

We first ran a read-only micro-benchmark thatgreps
for a common string within the Linux headers. The total
size of the searched files is about 9.1 MB. Most requests
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Figure 8: TheApache build NFS benchmark measures how long it takes to compile and link Apache 2.0.48.

in this benchmark are read-only and are optimized to cir-
cumvent agreement.

Figure 5 shows that PBFT takes 2.06× longer to com-
plete than PBFT-CS at 15 ms. 0-reply speculation lets the
client avoid blocking when revalidating a file after open-
ing it. With PBFT-CS, we can additionally read from
a file without delay: a nearby replica supplies all the
speculative data. Without a nearby replica (in uniform
topology), 1-reply speculation is not beneficial since op-
timized reads complete at about the same time the client
gets its first reply.

6.6 NFS: Write-only micro-benchmark

We next ran a write-only micro-benchmark that writes
3.9 MB into an NFS file (Figure 6). All writes are issued
asynchronously by the file system, and the client only
blocks when the file is closed. In this case, speculation is
not needed to increase the parallelism of the system.

There are a very small number of read requests in this
benchmark, issued when first opening a file, so there
is no practical opportunity to use 1-reply speculation.
Speculation at 2.5 ms reduces the benchmark run time
by only 6–7%. We found that within each latency (ir-
respective of topology), there is no statistical difference
between PBFT+0-spec and PBFT-CS.

6.7 NFS: Read/write micro-benchmark

We next ran a read/write micro-benchmark that creates
100 4 KB files in a directory. For each file, the client
creates and writes to a file; this includes read-only op-
erations to read the directory entries. PBFT-CS never
blocks on any of these operations.

In the primary-local topology, PBFT takes up to 19×
longer to complete than PBFT-CS (Figure 7). Further-
more, PBFT-CS shows a resilience to changes in latency
as it increases from 0-15 ms: PBFT-CS execution time
doubles while PBFT takes 59× longer. On the primary-
remote and uniform topologies, operations take longer to

complete, but client speculation still speeds up run time
by 6.03×.

6.8 NFS: Apache build macro-benchmark

Finally, we ran a benchmark that compiles and links
Apache 2.0.48. This emulates the standard Andrew-style
benchmark that has been widely used in the PBFT liter-
ature. This is intended to model a realistic and common
workload, where speculation allows significant compu-
tation to be overlapped with I/O.

Within the primary-local topology, PBFT takes up to
5.0× longer to complete than PBFT-CS (Figure 8). In
the uniform topology, PBFT takes up to 2.2× longer than
PBFT-CS. Since files are often reused many times during
the build process, there is less opportunity to benefit from
1-reply speculation. However, the relative difference in
performance degradation as latency increases is still sig-
nificant. With a co-located primary, PBFT-CS becomes
4.3× slower as delay increases to 15 ms, while PBFT
slows down by a factor of 25.

6.9 Cost of failure / faulty primary

To measure the cost of speculation failures, we mod-
ified our PBFT-CS relay to inject faulty digests into
early replies, simulating a primary that returns corrupted
replies at a rate of 1%. Any speculation based on a
corrupted reply will eventually be rolled back, and any
dependent requests will be turned into no-ops on good
replicas.

The results of this experiment are presented in Fig-
ure 9. We used the Apache build benchmark in the
primary-local topology. The injected faults were respon-
sible for slowdowns in PBFT-CS of 3%, 9%, and 29% at
0 ms, 2.5 ms, and 15 ms delay respectively.

These slowdowns are not identical because a client
may have a greater number of requests in the pipeline
for completion at a 15 ms delay than at a 0 ms delay.
When one request fails, nearly all outstanding requests
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Figure 9: For the Apache build benchmark in the
primary-local topology, PBFT-CS is at worst 29% slower
when 1% of its speculations fail.

also fail. We observed that 1% of our speculations failed
directly, and an additional 1%, 4%, and 5% of specula-
tions (at 0 ms, 2.5 ms, and 15 ms respectively) failed due
to their dependencies. These extra requests added unnec-
essary load to the replicas. By executing more requests in
advance, clients must roll back a larger amount of state.

As discussed in section 3.3, once a client detects that
1% of requests are failing, it can stop trusting the primary
to provide good first replies and disable its own specula-
tion. If replies are signed, each primary can cause only a
single failed speculation, and the resulting view change
will dominate recovery time. For reference, over 100
failed speculations in this benchmark result from a 1%
failure rate.

7 Related work

This paper contributes the first detailed design for apply-
ing client speculative execution to replicated state ma-
chine protocols. It also provides the first design and im-
plementation that uses client speculation to hide latency
in PBFT [8].

Speculator [28] was originally used to hide latency in
distributed file systems, and thus our work shares many
of Speculator’s original goals. Speculator’s distributed
file system application assumes the existence of a cen-
tral file server that always knows ground truth. No such
entity exists in a replicated state machine. For instance,
non-faulty replicas may disagree about the ordering of
read-only requests as discussed in Section 3.2.2. Prior to
this paper, Speculator was only used to speculate on zero
replies. The possibility of also speculating on a single
reply opens up several potential protocol optimizations
that we have explored, including the possibility of gen-
erating early replies and optimizing agreement protocols
for throughput.

Speculative execution is a general computer science

concept that has been successfully applied in hardware
architecture [15, 17, 35], distributed simulations [19],
file I/O [10, 16], configuration management [36], dead-
lock detection [26], parallelizing security checks [29],
transaction processing [20] and surviving software fail-
ures [12, 31]. This work contributes by applying specu-
lation to another domain, replicated state machines.

There has also been extensive prior work in the de-
velopment of replicated state machines, both in the fail-
stop [24, 30, 34] and Byzantine [1, 8, 11, 21, 22, 32, 37]
failure models. While Byzantine fault tolerance in par-
ticular has been an area of active research, it has seen
relatively limited deployment due to its perceived com-
plexity and performance limitations.

Our client-side speculation techniques apply equally
well to reducing latency in both fail-stop and Byzantine
fault tolerance protocols. However, they are particularly
useful for protocols that tolerate Byzantine faults due to
the higher latencies of such protocols.

PBFT [8] provides a canonical example of a Byzan-
tine fault-tolerant replicated state machine, using multi-
ple phases of replica-to-replica agreement to order each
operation. Several systems since PBFT have aimed to re-
duce the latency in ordering client operations, typically
by optimizing for the no-failure case [22] or for work-
loads with few concurrent writes [1, 11].

Byzantine quorum state machine replication protocols
such as Q/U [1] build upon earlier work in Byzantine
quorum agreement [3, 4, 13, 27], and provide lower la-
tency in the optimal case. Q/U is able to respond to write
requests in a single phase, provided that there are no
write operations by other clients that modify the service
state; inconsistent state caused by other clients requiresa
costly repair protocol. HQ [11] aimed to reduce the cost
of repair, and reduces the number of replicas required in
a Byzantine Quorum system from5f +1 to 3f +1, but it
introduces an additional phase to the optimized protocol.

Agreement protocols that use a primary replica are
able to batch multiple requests into a single agreement
operation, greatly reducing the overhead of the proto-
col and increasing throughput. While our protocol ap-
plies to both quorum and agreement protocols, the higher
throughput offered by batched agreement, along with re-
silience during concurrent write workloads, makes them
a better match for our techniques.

Our work on client speculation complements the
server-side use of speculation in Zyzzyva [22]. In
Zyzzyva,replicas execute operations speculatively based
on an ordering provided by the primary, while in our sys-
temclients speculate based on an early response from the
primary (or on 0 replies), with replicas executing only
committed operations. These two approaches are com-
plementary. Client speculation allows a client to issue a
subsequent operation after only a single phase of com-
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munication with the primary, which is especially helpful
for geographically dispersed deployments where some
replicas are far from the client. Server speculation speeds
up how fast replicas can supply a consensus response
to the client, which would allow clients in our system
to commit speculations faster. While we have evalu-
ated client speculation on the PBFT protocol, it would
apply equally well to Zyzzyva, where the client can re-
ceive early speculativeand consensus responses, in the
absence of failures.

8 Conclusions and future work
Replicated state machines are an important and widely-
studied methodology for tolerating a wide range of
faults. Unfortunately, while replicas should be dis-
tributed geographically for maximum fault tolerance,
current replicated state machine protocols tend to mag-
nify the effects of the long network latencies associated
with geographic distribution. In this paper, we have
shown how to use speculative execution at clients of a
replicated service to reduce the impact of network and
protocol latency. We outlined a general approach to us-
ing client speculation with replicated services, then im-
plemented a detailed case study that applies our approach
to a standard fault tolerant protocol (PBFT).

In the future, we hope to apply client speculation to
a wider range of protocols and services. For example,
adding client speculation to a protocol that uses server
speculation [22] should allow clients to commit specula-
tions faster. It may also be possible to apply client spec-
ulation to protocols that use more complex replication
schemes, such as erasure encoding [18], although clients
of such protocols may require more than one reply to
predict the final response with high probability.
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