Type-Safe Heterogeneous Sharing can be Fast

B. Liskov, A. Adya, M. Castro, Q. Zondervan

Laboratory for Computer Science,
Massachusetts Institute of Technology,
Cambridge, MA 02139

Abstract

Safe sharing is a desirable feature of an object oriented
database because it protects valuable database objects
from program errors in application code. It is espe-
cially desirable in a heterogeneous environment in which
applications are written in various programming lan-
guages, many of which have unsafe features.

However, safe sharing is not without its potential
performance costs. This paper explores these costs.
It describes a number of techniques that improve
performance without sacrificing safety, and presents
results of experiments that evaluate their effectiveness.
The results show that some of these techniques are very
promising, allowing safe sharing to be achieved with
essentially no performance penalty.

Keywords: Object-oriented databases, object-oriented
languages, type-safe languages, heterogeneity, perfor-
mance.

1 Introduction

Type-safe sharing is a desirable attribute for an
object-oriented database since it means valuable
database objects are less likely to be damaged by
errors in application code that uses the database.
It is even more desirable in a heterogeneous
environment in which applications are written in
various programming languages, many of which
have unsafe features.

Type-safe sharing means that database objects
are manipulated only by calling their methods.
This provides the benefits of abstraction and mod-

This research was supported in part by the Advanced
Research Projects Agency of the Department of Defense,
monitored by the Office of Naval Research under contract
N00014-91-J-4136. M. Castro is supported by a PRAXIS
XXT fellowship.

ularity. Abstraction allows users to conceptualize
objects at a higher level, in terms of their meth-
ods, and to reason about objects behaviorally, us-
ing their specifications rather than their implemen-
tations. Modularity allows local reasoning about
correctness, by just examining the code that im-
plements the abstraction, with the assurance that
no other code can interfere. These properties have
proved very useful in programming, especially for
large programs. We believe that they are at least as
important for object-oriented databases, where the
set of programs that can potentially interact with
objects in the database is always changing; type-
safe sharing can ensure that none of this new code
can cause previously written code to stop working
correctly.

Both abstraction and modularity work only if
backed up by an encapsulation mechanism that en-
sures that only the code that implements an ob-
ject’s abstraction has access to the representation
of the object. The only practical way to ensure en-
capsulation is to limit the programming language
used to implement database objects to be type-safe.
Such a type-safe programming language must pro-
vide a mechanism for implementing data abstrac-
tions that limits access to object representations,
and it must forgo various unsafe features such as
unsafe casts, explicit memory management, and
unchecked array indexing.

Although the language used to implement data-
base objects must support safe sharing, it is desir-
able to allow applications to be written in what-
ever language is most congenial to the applica-
tion programmer, e.g., C or C++. Many of these
languages are not type-safe, and therefore appli-
cation code written in them must not be allowed

to run inside the database. Instead the applica-
tion must run outside the database, and it must
interact with database objects only by calling their
methods (rather than manipulating them directly).
Note that we require here both that the code run in
response to the method calls be safe, and also that
it be the right code for that object and method.

Support for safe sharing is not without its po-
tential performance costs, and other systems have
chosen to forgo safety for improved performance.
Many systems, e.g., [6,12, 5] allow the applica-
tion code to directly manipulate database objects;
ODMG [7] also follows this approach because it al-
lows methods of shared objects to be written in
various unsafe programming languages. 02 [10]
and GemStone [16] store methods in the database,
which means that it is possible to guarantee that
the right code runs in response to application calls.
However, the languages provided by O2 for method
definition are not safe (for example, one of these
languages is an extension of C). GemStone does
better since programmers use a variant of Smalltalk
to define the methods stored in the database, but
GemStone exports an unsafe interface to client ap-
plications that allows direct access to an object’s
internal state.

This paper explores the performance penalty
of supporting safe sharing. It describes tech-
niques that improve performance without sacrific-
ing safety. It also presents the results of experi-
ments that indicate the effectiveness of the various
techniques. Our results show that although some
approaches are very slow, others provide excellent
performance. They indicate that it is not neces-
sary to abandon safe sharing to achieve good per-
formance in a heterogeneous environment; instead
you can have both. The experiments were done in
Thor, a new object-oriented database system that
supports safe sharing, and its type-safe language,
Theta, but the results are applicable to other sys-
tems and languages.

This paper is organized as follows. We begin in
Section 2 by briefly describing the context for our
work. Section 3 describes the techniques that can
be used to achieve safe sharing. Section 4 presents
the results of our performance experiments. We
conclude in Section 5 with a summary of what we
have accomplished.

2 The Thor System Interface

Thor is a new object-oriented database system in-
tended for use in heterogeneous distributed sys-
tems [11]. It provides highly-reliable and highly-
available storage so that persistent objects are
likely to be accessible when needed in spite of
failures. It supports heterogeneity at the ma-
chine, network, operating system, and especially
programming language levels. Thor makes it easy
for programs written in different programming lan-
guages to share objects. Different client languages
might be used for different applications, or even
for components of the same application. Further-
more, even when client code is written in unsafe
languages (such as C or C++), Thor guarantees
the integrity of the persistent store.

Thor provides its users with a universe of objects.
Each object in the universe is encapsulated: it
has a state that is not visible to users, and can
be accessed only by calling the object’s methods.
Each object also has a type that determines the
signatures of its methods.

Applications can make use of Thor objects
by starting up a session with Thor. Within a
session an application carries out a sequence of
transactions; our current approach starts up a new
transaction each time the client terminates the
previous one. FKach transaction consists of one
or more method calls. Clients can terminate a
transaction by requesting a commit or abort. In
the case of a commit, the system may not be
able to commit the transaction, e.g., because the
client has made use of stale data, and in this case
the transaction aborts. If the commit succeeds,
we guarantee that the transaction is serialized
with respect to all other transactions, and that
all its modifications to the persistent universe are
recorded reliably [1].

Method calls return either values or handles. A
value is an integer, boolean, character, or real. A
handle is a short-lived pointer to a Thor object. A
handle is valid only for the current client session;
an attempt to use it in a different session will result
in an error.

Figure 1 illustrates the Thor interface. Note
that Thor objects remain inside Thor, and the
code for object methods is stored in Thor and

Application Thor

get_root, invoke
commit/abort

values, handles

handle 1 -~ I
handle 2 ---

volatile

Figure 1: The Thor Interface

runs inside Thor; this is an important way in
which Thor differs from other systems. Code is
implemented using a new programming language
called Theta [9, 14]. Applications are implemented
in a programming language augmented by a veneer
that makes it easy for the application to interact
with Thor.

Theta is a strongly-typed language that guaran-
tees that objects can be used only by calling their
methods. In addition, all built-in Theta types do
run-time checks to prevent errors, e.g., array meth-
ods do bounds checking. Theta is based on a heap
with automatic storage management. It distin-
guishes between specifications (which are used to
define the interface and behavior of a new type) and
implementations (code to realize the behavior). It
provides support for both parametric and subtype
polymorphism, and it separates code inheritance
from the subtyping mechanism. More information
about Theta can be found in [9, 14].

All type definitions and implementations are
stored in Thor. The type definitions constitute a
schema library that can be used for browsing, for
compilation of Theta programs, and for producing
programming language veneers as discussed next.

A wveneer [2] is a small extension to a program-
ming language that makes it easy for programs
written in that language to use Thor. A veneer
provides procedures that can be called to open a
session or commit a transaction, and it provides
translations between scalars stored in Thor (e.g.,
integers) and related types in the application lan-
guage. It also provides a way of interacting with
(non-scalar) Thor objects. This is accomplished
by a stub generator for that language. A stub gen-
erator is a program that reads Theta type defini-
tions and produces a stub type in the application

language together with stub operations that corre-
spond to methods of the Theta type. We refer to
objects belonging to these stub types as stub ob-
jects. Stub objects are created in response to calls
to Thor; when a call returns a handle, the applica-
tion program receives a stub object containing the
handle. When a stub operation is called on a stub
object, it calls the corresponding Thor method on
the object denoted by the handle in the stub ob-
ject, waits for a reply, and returns to the caller.
When Thor receives a call from the veneer, it
checks whether the handle is valid, whether the ob-
ject has the method being called, and whether the
call has the right number and types of arguments.
This dynamic type checking is necessary for unsafe
languages, since stub code can be corrupted or by-
passed. If the client language were safe, checking
would not be necessary, which would speed up the
interaction between the application code and Thor.
We have defined veneers for C, C++, Perl,
and Tcl, although only the C++ veneer will
be provided in Thor0, the first Thor release.
Experience shows that defining a new veneer is
not very difficult. It is not necessary to modify
the language compiler. Also veneers can be easily
provided regardless of whether the application
language provides support for objects. More
information about veneers can be found in [2, 15].

3 Safe Sharing Techniques

The simplest way of achieving safe sharing is
by keeping the application and the database in
separate protection domains, which might run on
the same or on different machines; we will refer to
this as the all-outside approach. Each method call
invoked by the application is then a cross-domain
call. If the call performs a considerable amount
of work (e.g., a complex query on a large set of
objects), the domain-crossing costs are relatively
unimportant. However, if the call does relatively
little work, the domain-crossing costs dominate and
can result in poor application performance. This
scenario is the worst case for safe sharing and in the
rest of this paper, we will analyze its costs along
with techniques to reduce them.

The execution time of an application’s transac-
tion can be explained by the following model. Sup-

pose the client invokes N methods on database ob-
jects. Each of these calls has an overhead of S sec-
onds; S is the average cost of communicating the
call from the client to the database, type checking
the call at the database, and communicating the
result from the database back to the client. (Thus
S includes the cost of marshaling/unmarshaling ar-
guments and results.) Also, suppose running the N
calls requires X pairs of domain crossings, where
each domain-crossing pair has an average cost of
C seconds, i.e., C is the cost of a domain crossing
round trip. Finally, let the remaining cost be R; R
corresponds to the cost of running the transaction
without cross-domain calls. Then the total elapsed
time T will be:

T=X*C+N*S+R (EQN)

Note that the useful work done in the above
equation is R; the rest of the time is the penalty
paid for safe sharing. Note also that R includes
concurrency control and persistency-related costs
that are incurred while the application computa-
tion runs; however it does not included the cost of
committing (or aborting) the application transac-
tion, since we want to focus on the cost of the com-
putation itself. R also includes safety-related costs
incurred by Theta (such as array bounds checking).

Below we discuss techniques that reduce T.
There are three techniques — batching, code trans-
fer, and sandbozing.

3.1 Batching

Batching is a technique that reduces the total
execution time by reducing the number of domain
crossings. Rather than having a crossing for each
call, calls are grouped into batches, and an entire
batch is sent to the database in one crossing. Thus,
X is divided by the average batch size.

Earlier work [2] investigated one way of doing
batching, called batched futures. In this approach,
whenever a method call returns a handle, the call
is batched for future execution; this makes sense
because the only thing that can be done with
a handle is to make a subsequent call that uses
the corresponding object. A batch is sent to the
database when the application makes a call that
requires an immediate response, such as a call
that returns a value. Although this approach does

improve performance (over an approach that has
one domain crossing per call), experiments with
OOT7 [3] showed that the average batch size was
low (3.27), and this limited the amount of speed
up.

This led us to investigate a second approach,
batched control structures[18], in which batches
corresponding to entire loops can be constructed.
This approach gives much higher batching factors,
and thus reduces X substantially. It also reduces
S. A batch describes a loop by containing a
description of each call in a single iteration of
the loop. It is type-checked when it is received
by the database, and the type-checking cost is
proportional to the size of the batch, rather than
the number of calls that will occur when the batch
runs in the database. Similarly, the marshaling and
unmarshaling costs are also proportional to the size
of the batch.

Both batched futures and batched control struc-
tures incur a higher cost C for each domain cross-
ing. This extra cost is relatively unimportant for
batched control structures since batch sizes are
very large, but it can have a significant impact for
batched futures.

3.2 Code Transfer

Code transfer moves a portion of the application
into the database. The application then makes
calls on the transferred code; thus code transfer ef-
fectively increases the granularity of the calls made
by the application. Typically, the entire applica-
tion computation is not moved into the database
since there are certain operations that do not need
the database, e.g. user interface operations. How-
ever, there is some computation/navigation that is
done between such non-database operations; this
computation can be captured in a procedure and
transferred to the database. Queries are a code
transfer technique; here we are interested in other
kinds of code transfers that cannot be expressed in
a query language such as OQL or extended SQL.

Clearly, we cannot just take a procedure written
in an unsafe language like C++4 and move it
into the database. @ We need some safe ways
of performing code transfer. Here are a few
possibilities:

1. Write the procedure in the database language
(Theta in the case of Thor). The only problem
with this approach is that it requires the
application programmer to know the database
language.

2. Translate a piece of the application code into
the database language. The piece being trans-
lated should correspond to a procedure that
does not have any free variables, i.e., all commu-
nication with the environment is via arguments
and results (and reads and writes of database
objects). In addition, the language used to
write such procedures would be limited to a
simple (safe) subset of the application language.
This approach has the disadvantage of requiring
safe subsets of various application languages to
be defined; a more serious disadvantage is that
a compiler is needed for each application lan-
guage.

3. Translate the application code to Java [13] byte
codes. As in the previous approach, we assume
that a procedure without free variables is being
translated. It is possible that translators
from various application languages to Java
will be common in the future, and therefore
this approach avoids the problem of needing
translators to a non-standard language like
Theta. A potential disadvantage is that Java
byte codes are interpreted, which is unlikely to
give performance competitive with the above
two approaches. However, this problem can be
overcome by compiling the Java byte codes.

These approaches reduce cost by reducing the
number of calls IV, which also reduces the number
of domain crossings X. They can result in
greatly improved performance because very large
reductions are possible.

Each approach requires validation to ensure that
the code being transferred to the database is legal.
For the first two cases, the code that runs inside
the database is object code produced by the Theta
compiler. Therefore, we need to validate that
the code really is produced by a legitimate Theta
compiler. This can be accomplished by running
the compiler inside the database, or running the
compiler outside and communicating with it over

a secure, authenticated connection. Validation is
part of the methodology for loading Java byte
codes; it is performed by the byte code verifier.

Validation can be very expensive, but it is not
necessary to do it on every call. Instead, code can
be validated and then stored in the database for
future use; this is a kind of memoizing.

The transferred code makes calls to database
code and we need to ensure that these calls are
type-correct. In the first two approaches this type
checking is done when the Theta code is compiled.
In the third case the byte-code verifier does most
of the type checking, although a few checks are left
for runtime.

3.3 Sandboxing

The final technique for reducing the cost of safe
sharing is to transfer object code into the database
and use a sandboxing technique [17] to provide
safety. This technique basically involves putting
(unsafe) application code/data in a restricted range
of virtual memory addresses and then allowing the
application code to access only these addresses.
The application’s object code is encapsulated,
i.e., augmented with runtime checks so that each
jump/store/load operates only on valid addresses.
Wahbe et al. have shown that the overheads of this
approach are relatively low. With this approach
the number of calls N remains the same, and
furthermore each call requires a domain crossing.
However, the cost of a domain crossing (C) is
greatly reduced.

Sandboxing (like the code transfer techniques)
requires both validation and checking. Sandboxed
code is validated using an object code verifier [17].
Checking must be done on every call made from the
sandboxed code to the database; thus each call still
incurs a cost S. Checking costs have been ignored
in earlier work on sandboxing; our experiments
shed light on these overheads.

4 Experiments

To evaluate the approaches to safe sharing dis-
cussed in the previous section, we ran experiments
that measured their performance. Our experiments
were designed to highlight the costs of the various
approaches.

The experiments ran on Thor. Thor has a dis-
tributed client-server architecture. Objects are
stored persistently by a set of servers. Applica-
tions access these objects by communicating with
a front-end (FE) process that caches copies of per-
sistent objects. Both application and FE run on
the client machine, in separate protection domains.

The experiments ran the FE and application
on a DEC 3000/400 workstation, with 128 MB
of memory and OSF/1 version 3.2. The code
was compiled with DEC’s CXX and CC compilers
with optimization flag -O2. We found that the
performance of our experiments was very sensitive
to the layout of code in memory (we observed
differences as large as 30%). Therefore, in order
to reduce the noise due to misses in the code
cache, we used cord and ftoc [8], two utilities that
reorder procedures in an executable by decreasing
density (i.e. ratio of cycles spent executing the
procedure to its static size). We used cord to obtain
different executables optimized for each particular
experiment.

The application and the FE communicate using
a shared memory buffer with a simple synchroniza-
tion based on spinning until a flag takes some de-
sired value, and yielding the processor after each
unsuccessful test. This gives us a very fast domain
crossing. The cost of ping-ponging an integer be-
tween the client and the FE is 31us.

The experiments ran the single-user OO7 bench-
mark [3]. The OO7 database contains a tree of as-
sembly objects, with a height of 7; each non-leaf
assembly has three children. The leaves point to
three composite parts chosen randomly from among
500 such objects. Each composite part contains a
graph of atomic parts linked by connection objects;
each atomic part has 3 outgoing connections. The
(small) database has 20 atomic parts per compos-
ite part and a total size of 7 MB. We implemented
the database in Theta, following the specification
of 00T [4] closely.

We report results for traversal T1, which per-
forms a depth-first, read-only traversal of the as-
sembly tree and executes an operation on the com-
posite parts referenced by the leaves of this tree.
This operation is a depth-first, read-only traversal
of the entire graph of a composite part.

We ran the traversal 52 times within a single

transaction; we report the average elapsed time of
the 50 middle runs. The standard deviation was
always below 1% for values above one second and
below 6% for values below one second. We used an
FE cache large enough to hold the entire database.

This experimental methodology strives to min-
imize the costs that are not related to safe shar-
ing. In particular, it ensures that there is no disk
I/O, no message passing across the network, and
no commit cost in the measured traversal execu-
tion times. Therefore, the costs reflect only the
computation at the application and FE, and the
communication between them.

4.1 Results

The results of our experiments are shown in Fig-
ure 2. The experiment labeled all-outside ran the
entire traversal in the application. In this experi-
ment, the application called methods on database
objects that simply fetched values of instance vari-
ables. The experiment labeled batching shows the
performance when using the batched futures ap-
proach. The same-process experiment gives an ap-
proximation to what can be expected from a sand-
boxing technique. The remaining two experiments
are code transfer techniques in which part of the
application was written in Theta. In all-inside,
the entire traversal ran inside the FE !. In part-
inside, the assembly tree is traversed as in all-
outside, but the composite parts and their asso-
ciated graphs are traversed in the FE using Theta
code. The figure shows that the all-outside ap-
proach performs much worse than all-inside (ap-
proximately 40 times slower). Note that this is a
worst case, both because our experimental method-
ology avoids network and disk I/O overheads and
because the methods called by the application are
very simple and perform no computation. In fact,
the figure shows that when methods perform some
computation the overhead is significantly reduced
(part-inside is only approximately 2 times slower
than all-inside).

To explain the experiments’ results, we present
some data that allows them to be analyzed using
our equation FQN. The number of cross-domain
calls performed in these experiments is presented

This is in fact the way that the OO7 traversal is
supposed to run according to [4].

30+
I 3ll-outside (28.99)

batching (18.7 s)
EEE same-process (6.8 s)

part-inside (1.5 9)
mm all-inside (0.7 9)

il I .

Figure 2: Performance comparison of different safe
sharing techniques.

N
=}
1

=
1S}
1

Elapsed time (seconds)

Experiment X
all-outside 450886
batching 138020
same-process 450886
part-inside 9112
all-inside 1

Table 1: Number of cross domain calls.

in Table 1. Table 2 presents a breakdown of the
execution time for the all-outside experiment; it
shows that context switching is the dominant
overhead in this case. The table allows us to
compute the parameters of the analytic model
presented in FEQN, obtaining C = 49us, § =
13.5us, and R = 0.7s.

In Table 2, the context switching overhead was
determined by comparing the elapsed time in all-
outside with the elapsed time obtained by running
the same code with the client and FE executing
in the same process, and communicating using
the same mechanism (labeled same-process). The
safety and marshaling overhead was determined by
subtracting the all-inside traversal time from the
same-process time. This slightly underestimates
this cost because the traversal code executes faster
in C++ than in Theta as we will show. 2

The batching experiment reduces the number

21t is interesting to note that a significant portion of the
safety cost, 2.6s, is due to a reference counting scheme that
transparently garbage collects unused object handles. We
have designed and implemented a scheme that eliminates
this cost but forces the client to free object handles explicitly.

Context switching (X x C) | 22.1
Safety and Marshaling (N x S) | 6.1
Inside traversal (R) | 0.7

Total | 28.9

Table 2: Breakdown of elapsed time for the all-
outside traversal (seconds).

of pairs of domain crossings X from 450886 to
138020 but it does not change the number of
calls N performed by the client. Therefore,
the analytical model predicts an elapsed time of
13.6s. The difference between the predicted value
and the observed value of 18.7s is due to the
overheads introduced by the machinery to handle
batched futures. This technique has the advantage
that it is transparent to the programmer and
portable. However, the experiment shows that its
effectiveness is limited by the factor of reduction
in the number of domain crossings (i.e. the size
of batches) and the overhead introduced by the
machinery to handle batching.

The same-process experiment represents an ap-
proximation to the cost of running the traversal us-
ing sandboxing. In this experiment, the application
and FE execute in the same process. The traver-
sal still makes N = 450886 calls to database ob-
ject methods; each of these requires a fault domain
crossing, but we have assumed that these cross-
ings have zero cost (C' = 0). We also neglect the
overheads of running sandboxed client code; ac-
cording to [17] sandboxed client code runs approx-
imately 20% slower. Therefore we are only left with
the cost S for making and type checking the calls.
As expected performance improves noticeably over
the all-outside case, but it is still significantly
worse than running the entire traversal in Theta;
this happens because sandboxing does not reduce
the safety and marshaling/unmarshaling costs, i.e.
N x S, which can be significant for large N. 3

We do not show any experiments that give
the performance of the batched control structures

3The figure shows sandboxing to be 9.4 times worse
than all-inside, but this experiment was done with garbage
collection of handles; the same experiment done with explicit
freeing of handles performs 5.8 times worse than all-inside.

mechanism, since it is not running in the current
version of Thor. The part-inside gives an idea
of what its performance might be (i.e., we could
batch a loop for traversing each composite part).
However, batched control structures would not
perform as well as part-inside because it incurs
additional overhead (the system translates the
batch into a parse tree that is then interpreted to
run the batch).

I Concurrency control and

@ 600 residency checks (192 ms)
S Theta (532 ms)
3 m— C++ (328 ms)
E w01
]
E
ﬁ 200
ks
w

oL

Figure 3: Cost of providing safety in Theta.

The results in Figure 2 show that code transfer
techniques that run part of the application in
the FE using Theta have the best performance.
The all-inside value represents a best case for
these techniques. To put this all-inside value in
perspective we compare it with the elapsed time
measured when running the same traversal using a
C++ program that mimics the Theta code. The
result of this comparison is presented in Figure 3.
The C++ program does not incur any overhead
for concurrency control and residency checks, but
of course it ought to. Therefore, we break the all-
inside execution time into overhead that is related
to concurrency control and residency checks, and
the actual cost of running the traversal in Theta.
We conclude that Theta is 62% slower than the
corresponding C++ implementation that provides
no safety guarantees.

Table 3 presents a more detailed breakdown of
the execution time for the all-inside traversal. The
array bounds cost is necessary for safe sharing
since it prevents violations of encapsulation. The
remaining cost is not necessary for safe sharing.
Here we are generating and checking exceptions
for such things as integer overflow. Although safe
sharing is still possible without these checks, it is

worth noting that overall system safety is improved
by having them: they will prevent erroneous
transactions from committing that might commit
in their absence. Furthermore, we have already
designed a scheme that will reduce a large part of
this cost.

Concurrency control | 120
Residency checks | 72

Exception generation/handling | 156
Array bounds checking | 36
Traversal time | 340

Total | 724

Table 3: Breakdown of elapsed time for the all-
inside traversal (milliseconds).

Thus the only cost in the all-inside case that is
intrinsic to safe sharing is the array bounds check-
ing. This introduces an overhead of approximately
11% relative to the observed elapsed time for the
C++ code. These results show that it is not very
expensive to provide safe sharing of objects using
a type-safe statically typed language like Theta.
Furthermore, our Theta compiler is an experimen-
tal prototype, and therefore it does not generate
highly-tuned code. We expect overheads to be
reduced by using common compiler optimization
techniques such as code motion.

5 Conclusions

Safe sharing is a desirable feature of an object-
oriented database because it protects valuable
database objects from program errors in applica-
tion code. It is especially desirable in a heteroge-
neous environment in which applications are writ-
ten in various programming languages, many of
which have unsafe features.

However, safe sharing is not without its potential
performance costs. This paper has explored these
costs. It describes three techniques — batching,
code transfer, and sandboxing, that improve per-
formance without sacrificing safety, and presents
results of experiments that evaluate their effective-
ness. The results show that code transfer tech-
niques are especially promising, allowing safe shar-
ing with almost no performance penalty.

Code transfer techniques provide good perfor-
mance because they reduce domain-crossing costs
by reducing the number of domain crossings, and
allow the checking of most method calls to happen
prior to runtime, either when the code is compiled,
or (in the case of Java byte codes) when it is veri-
fied.

The problem with code transfer techniques is
that they require either an application program-
mer to write code in the unfamiliar database lan-
guage, or they require compilers from arbitrary un-
safe languages to the database language. The one
exception here is translations to Java byte codes;
this approach is promising because we may expect
these translators to come into existence for other
reasons (e.g., Web applets). Although running an
interpreter for the byte codes inside the database
is unlikely to produce performance comparable to
what can be achieved when translating directly into
the database language, this problem can be over-
come by compiling the byte codes. This way we
should be able to achieve the best possible perfor-
mance (equivalent to the all-inside experiment).

References

[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari.
Efficient optimistic concurrency control using loosely
synchronized clocks. In ACM SIGMOD Int. Conf. on
Management of Data, pages 23-34, San Jose, CA, May
1995.

[2] P. Bogle and B. Liskov. Reducing cross-domain call
overhead using batched futures. In OOPSLA 94, 1994.

[3] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The
OO7 benchmark. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of
Data, pages 12-21, Washington, DC, May 1993.

[4] M. J. Carey, D.J. DeWitt, and J.F. Naughton.
The OO7 benchmark. Technical Report; Re-
vised Version dated 7/21/1994 1140, University of
Wisconsin-Madison, 1994. WWW users: see URL
ftp:/ /ftp.cs.wisc.edu/OO07.

[6] M. J. Carey et al. The EXODUS extensible DBMS
project: An overview. In Readings in Object-Oriented
Database Systems, pages 474-499. Morgan Kaufmann,
1990.

[6] M. J. Carey et al. Shoring up persistent applications.
In ACM SIGMOD Int. Conf. on Management of Data,
Minneapolis, MN, May 1994.

[7] R. G. Cattell, editor. The Object Database Standard:
ODMG-93. Morgan Kaufmann Publishers, Inc., San
Mateo, CA, 1994.

[8] Digital Equipment Company. OSF/1 Manual Page.

[9] M. Day, R. Gruber, B. Liskov, and A. C. Myers. Sub-
types vs. where clauses: Constraining parametric poly-
morphism. In Proceedings of OOPSLA ’95, Austin TX,
October 1995. At ftp://ftp.pmg.lcs.mit.edu/pub/-
thor/where-clauses.ps.gz.

[10] O. Deux et al. The story of Oz2. IEEE Transactions on
Knowledge and Data Engineering, 2(1):91-108, March
1990.

[11] B. Liskov et al. The language-independent interface of
the Thor persistent object system. In Object-Oriented
Multi-Database Systems, pages 570-588. Prentice Hall,
1996.

[12] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb.
The ObjectStore database system. Communications of
the ACM, 34(10):50-63, October 1991.

[13] T. Lindholm and F. Yellin. The Java Virtual Machine.
Addison-Wesley, Englewood Cliffs, NJ, May 1996.

[14] B. Liskov et al. Theta Reference Manual. Programming
Methodology Group Memo 88, MIT Lab for Computer
Science, Cambridge, MA, February 1994. Available at
http://www.pmg.lcs.mit.edu/papers/thetaref/.

[156] B. Liskov et al. Safe and efficient sharing of persistent
objects in thor. In Proceedings of SIGMOD ’96, 1996.

[16] D. Maier and J. Stein. Development and implemen-
tation of an object-oriented DBMS. In B. Shriver
and P. Wegner, editors, Research Directions in Object-
Oriented Programming. MIT Press, 1987.

[17] R. Wahbe, S. Lucco, T. Anderson, and S. Graham.
Efficient software-based fault isolation. In Proceedings
of the 14th ACM Symposium on Operating System
Principles, Asheville, North Carolina, USA, December
1993.

[18] Q. Y. Zondervan. Increasing cross-domain call batching
using promises and batched control structures. Tech-
nical Report MIT/LCS/TR-658, Laboratory for Com-
puter Science, MIT, Cambridge, MA, June 1995.

