
Proceedings of the 24th ACM Symposium on Principles of Programming Languages, Paris, France, January 1997

Parameterized Types for Java

Andrew C. Myers Joseph A. Bank

Laboratory for Computer Science

Massachusetts Institute of Technology

545 Technology Square, Cambridge, MA 02139

andru,jbank,liskov @lcs.mit.edu

Barbara Liskov

Abstract

Java offers the real possibility that most programs can be
written in a type-safe language. However, for Java to be
broadly useful, it needs additional expressive power. This
paper extends Java in one area where more power is needed:
support for parametric polymorphism, which allows the def-
inition and implementation of generic abstractions. We dis-
cuss both the rationale for our design decisions and the impact
of the extension on other parts of Java, including arrays and
the class library. We also describe optional extensions to
the Java virtual machine to allow parameterized bytecodes,
and how to verify them efficiently. We have extended the
Java bytecode interpreter to provide good performance for
parameterized code in both execution speed and code size,
without slowing down non-parameterized code.

1 Introduction

Java [Sun95a] is a type-safe, object-oriented programming
language that is interesting because of its potential for WWW
applications. Because of the widespread interest in Java, its
similarity to C and C++, and its industrial support, many
organizations may make Java their language of choice.

Java is also interesting because of its machine-independent
target architecture, the Java Virtual Machine (JVM) [LY96].
Java is attractive for web applications, in part because Java
bytecodes can be statically verified, preventing violations of
type safety that might access private information.

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval
Research under contract N00014-91-J-4136, and in part by a grant from Sun
Microsystems.

POPL ’97, Paris, France.
Copyright c 1997 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that new copies bear this notice and the full citation on the first page.
Copyrights for componentsof this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications
Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Java as currently defined is explicitly a first version that is
intended to be extended later. This paper addresses one of the
areas where extension is needed, namely, support for generic
code. In Java, it is possible to define a new type, such as a set
of integers, but it is not possible to capture a set abstraction
where the elements of a particular set are homogeneous, but
the element type can differ from one set to another. Current
Java programs adapt to the lack of genericity by using runtime
type discrimination, which is awkward for the programmer
and also relatively expensive.

In this paper, we extend Java with parametric polymor-
phism, a mechanism for writing generic interfaces and imple-
mentations. We provide a complete design of this extension
and discuss the interaction of parametric polymorphism with
other Java features, including ways that generic abstractions
can simplify coding with some standard Java classes. We
also show how to implement this design efficiently. We
sketch an implementation of the design using the existing
JVM bytecodes, and also present an extension to the JVM
that provides better performance. Finally, we present results
from a working prototype of the extended JVM interpreter,
showing that our technique improves performance by up to
17% over standard Java. Detailed specifications of our ex-
tensions are available in the appendices.

An explicit goal of our work was to be very conservative.
We extended Java by adapting an existing, working mecha-
nism with as few changes as possible. We supported the Java
philosophy of providing separate compilation with complete
inter-module type checking, which also seemed important
for pragmatic reasons.

We used the Theta mechanism [DGLM95, LCD 94] as
the basis of our language design, because Theta has im-
portant similarities to Java. Like Java, it uses declared
rather than structural subtyping, and it also supports com-
plete inter-module type checking. We rejected the C++ tem-
plate mechanism [Sto87] and the Modula-3 [Nel91] generic
module mechanism because they do not support our type-
checking goal; they require that a generic module must be
type checked separately for every distinct use. Furthermore,
the most natural implementation of these mechanisms dupli-

132

cates the code for different actual parameters, even when the
code is almost entirely identical.

For the implementation, our concern was to achieve good
performance for generic code in both execution speed and
code size. An explicit goal was to use the same code for
all instances of a generic abstraction, in order to avoid code
blowup. Techniques for implementing parameterized code
without bytecode extensions lead to slower execution or in-
creased code size. Type checking our parameterized code
in the Java bytecode verifier is also efficient: the code of a
parametric class need only be verified once, like that of an
ordinary class. All our extensions are backward compatible
with the current JVM and have little impact on the perfor-
mance of non-parameterized code. The result is that Java
code is not only simpler to write, but also faster. For a sim-
ple collection class, avoiding the runtime casts from Object

reduced run times by up to 17% in our prototype interpreter.
The remainder of the paper is organized as follows. Sec-

tion 2 provides an informal description of our extensions to
the Java language. Section 3 sketches how to implement
the language extensions using the standard virtual machine.
It also shows how these extensions are converted into our
extended bytecode specification and how the extended byte-
codes are verified and run. Finally, it presents some perfor-
mance results. Section 4 discusses ways that other aspects
of Java could be changed to take advantage of parametric
polymorphism. We conclude in Section 5 with a discus-
sion of what we have accomplished. The appendices contain
detailed specifications of our language and virtual machine
extensions.

2 Language Extensions

This section provides an informal description of our exten-
sions to the Java language, illustrated with examples. It
describes extensions to allow parameterized interfaces and
implementations, and discusses several important design is-
sues.

2.1 Java Overview

Java is similar to a safe version of C++ with all objects in
the heap. Variables directly denote objects in the heap; there
are no pointers. For safety, Java programs are statically type
checked, and storage is managed by a garbage collector.

Java allows new types to be defined by both interfaces
and classes [Sun95a]. An interface contains just the names
and signatures of methods, but no implementations. A class
defines methods and constructors, as well as fields and im-
plementations.

An interface can extend one or more other interfaces,
which means that the type defined by those interfaces are
supertypes of the one being declared. Similarly, a class can

interface SortedList [T]
where T boolean lt (T t); ...

interface Map [Key, Value]
where Key boolean equals (Key k); ...

Figure 1: Interface definitions

extend another class (but just one), in which case it defines
a subtype of the other class and also inherits its implementa-
tion.

Now we will discuss our extensions to support parame-
terized types.

2.2 Parameterized Definitions

In our extended Java specification, interface and class defini-
tions can be parameterized, allowing them to define a group
of related types that have similar behavior but which differ
in the types of objects they manipulate. All parameters are
types; the definition indicates the number of parameters, and
provides formal names for them. For example, the interface

interface SortedList [T] ...

might define sorted list types, which differ in the type of
element stored in the list (e.g., SortedList[int] stores ints, while
SortedList[String] stores strings). As a second example,

interface Map [Key, Value] ...

defines map types, such as Map[String,SortedList[int]], that map
keys to values.

In general, a parameterized definition places certain re-
quirements on its parameters. For example, a SortedList must
be able to sort its elements; this means that the actual element
type must provide an ordering on its elements. Similarly a
Map must be able to compare keys to see if they are equal.
The parameterized definition states such requirements ex-
plicitly by giving where clauses, which state the signatures
of methods and constructors that objects of the actual param-
eter type must support. We discuss why we selected where
clauses rather than other parameter constraint mechanisms
in Section 2.8.

Figure 1 shows these two interfaces with their where
clauses. In the definition of SortedList, the where clause
indicates that a legal actual parameter must have a method
named lt (less than) that takes a T argument and returns a
boolean. The second definition states that a legal actual pa-
rameter for Key must have a method named equals that takes a
Key as an argument and returns a boolean. Note that Map does
not impose any constraints on the Value type, and therefore
any type can be used for that parameter.

The body of a parameterized definition uses the type pa-
rameters to stand for the actual types that will be provided
when the definitions are used. For example, Figure 2 gives
the sorted list interface. Note the use of the parameter T to
stand for the element type in the headers of the methods.

133

interface SortedList[T] where T boolean lt (T t);
// overview: A SortedList is a mutable, ordered sequence.
// Ordering is determined by the lt method of the element type.

void insert (T x);
// modifies: this
// effects: adds x to this

T first () throws empty;
// effects: if this is empty, throws empty,
// else returns the smallest element of this

void rest () throws empty;
// modifies: this
// effects: if this is empty, throws empty,
// else removes the smallest element of this

boolean empty ();
// effects: if this is empty, returns true,
// else returns false.

Figure 2: The sorted list interface

Thus the insert method takes in an argument of type T, and
the first method returns a result of type T.

2.3 Instantiation

A parameterized definition is used by providing actual types
for each of its parameters; we call this an instantiation. The
result of instantiation is a type; it has the constructors and
methods listed in the definition, with signatures obtained
from those in the definition by replacing occurrences of for-
mal parameters with the corresponding actuals. We also use
the term “instantiation” to refer to this type. Instantiations
may be used wherever an ordinary type may be used.

When processing an instantiation, the compiler ensures
that each actual parameter type satisfies the where clause for
the associated parameter. This means that it has all the named
methods and constructors, with compatible signatures. For
example, the compiler rejects an instantiation such as Sort-

edList[SortedList[int]], since the argument SortedList[int] does not
have an lt method.

However, SortedList[int] is a valid instantiation, assuming
that we can use existing primitive types such as int and char as
actual type parameters even though these types do not have
methods. We solve this problem in a simple and straightfor-
ward way: the various operations supported by these types
are considered to be methods for the purpose of matching
where clauses. For example, the == operator corresponds to
the equals method, and corresponds to the lt method. (See
Section 4.1 for further discussion of primitive types.)

The information in the where clause serves to isolate the
implementation of a parameterized definition from its uses
(i.e., instantiations). Thus, the correctness of an instantia-
tion of SortedList can be checked without having access to a

class that implements SortedList; in fact, there could be many
such classes. Within such a class, the only operations of
the parameter type that may be used are the methods and
constructors listed in the where clause for that parameter.
Furthermore, it must use the routines in accordance with the
signature information given in the where clause. The com-
piler enforces these restrictions when it compiles the class;
the checking is done just once, no matter how many times
the class is instantiated.

A legal instantiation sets up a binding between a method
or constructor of the actual type, and the corresponding
where-routine, the code actually called at runtime. Since
an instantiation is legal only if it provides the needed rou-
tines, we can be sure they will be available to the code when
it runs. Thus, the where clauses permit separate compilation
of parameterized implementations and their uses, which is
impossible in C++ and Modula 3.

2.4 Satisfying Where Clauses

An instantiation is legal if the actual parameter satisfies the
where clause. Let us examine satisfaction more carefully.
The compiler checks whether a type t (whether an interface,
class, or formal parameter) satisfies a where clause for a
method or constructor m by verifying that a hypothetical call
to m would succeed. The arguments to this hypothetical call
have the same types as in the where clause, but with all occur-
rences of the formal parameter replaced by t. For example,
consider the where clause in the SortedList interface. The
instantiation SortedList[X] is legal exactly when the statement
b = x1.lt(x2) is legal, where b is a boolean and both x1 and x2

have type X.
Now, the call x1.lt(x2) is legal if the lt method of type X

accepts any supertype of X, and returns any subtype of boolean

(i.e., boolean itself). Therefore, an instantiation can be legal
even if the signatures of constructors and methods of the
actual type do not match exactly with those in the constraints.
Instead we require only compatibility, using the standard
contra/covariance rules for routine matching [Car88]. The
only extension to these rules is that any exceptions thrown
by the provided method must be subtypes of the exceptions
given for that method in the where clause.

Because Java (like C++) allows overloading, sometimes a
constraint is matched by more than one method or constructor
of the actual type. In this case, the closest match is selected; if
there is no uniquely best match, a compile-time error results.
This is the same rule that is used in Java to decide which
method/constructor to use in a call. For example, the unique
method that would be called in the expression x1.lt(x2) is the
one selected to satisfy the where clause.

Similar reasoning governs when protected and private
methods can be used as where-routines: a where-routine
binding is legal if the bound routine can be called legally at
the point of instantiation. In our example, X would satisfy

134

interface SortedList Member [T]
where T boolean lt (T); boolean equals (T);
extends SortedList[T]

// overview: SortedList Members are sorted lists
// with a membership test.

boolean member (T x);
// effects: returns true if x is in this else returns false.

Figure 3: Extending a parameterized interface

the where clause only if its lt method were visible to the code
performing the instantiation.

So far we have considered only instantiations in which the
actual parameter is a “known” type such as int or SortedList[int].
However, the actual in an instantiation can also be a formal
type parameter. In this case, the satisfaction rule implies
that the parameter satisfies a where clause only if it has a
compatible where clause of its own. An example of such an
instantiation will be given in the next section.

2.5 Extending Interfaces

In Java, interface and class definitions explicitly indicate their
position in the type hierarchy. Parameterized definitions are
no different. For example, the interface SortedList Member

given in Figure 3 extends SortedList by providing a member-
ship test via the member method. Note that the where clause
for this interface is more restrictive than SortedList’s: the no-
tion of membership requires an equality test (equals), and
SortedList Member objects also order their objects using lt.

The rule for the legality of an extension is particularly
simple: An extension is legal if all the extended class or
interface definitions are legal. The extended type must be
a class or interface; it may not be a formal parameter. For
example, the definition of SortedList Member states that it ex-
tends SortedList[T]. Since the formal parameter T satisfies the
lt where clause of SortedList, the declaration is legal.

The meaning of the extends clause is the following:

For all types t where SortedList Member [t] is a
legal instantiation, SortedList Member [t] extends
SortedList [t]

Thus, SortedList Member[int] extends SortedList[int], etc. If Sort-

edList Member[t] is legal, then we can be sure that SortedList[t] is
also legal because of the type checking of the instantiation of
SortedList when the SortedList Member interface was compiled.

The extends clause need not use all the parameters of the
interface being defined. Here are three examples:

interface A[T] extends B
interface Map[T, S] extends Set[T]
interface StringMap[T] extends Map[String, T]

In the first example, the declaration states that for any actual
t, A[t] extends B. In other words, anywhere that a B is allowed,
an A[t] can be used with any t (provided the instantiation is
legal). In the second example, the declaration states that for
any actual types t and s, Map[t,s] extends Set[t]. The final
example shows that some parameters of the interface being
extended may be supplied with actual types.

As in ordinary Java, all subtype relations for instantiations
must be explicitly declared. The same rule holds for classes
as well, except that Object is automatically a supertype of all
class types. In particular, subtype relations between different
instantiations of the same parameterized class are disallowed.
Thus SortedList[BigNum] is not a subtype of SortedList[Num],
even if BigNum is a subtype of Num. The reasons for this rule
are discussed in Section 4.2 and elsewhere [DGLM95].

2.6 Implementations

A Java class can implement one or more interfaces, using
the implements clause. The rule for legality of an implements

declaration is the same as that for extends. For example,
Figure 4 shows part of HashMap, a class that implements
Map using a hash table. Note that the class requires equals

and therefore the instantiation Map[Key,Value] is legal. The
implementation of lookup uses both where-routines: hashcode

is used to hash the input k to find the bucket for that key, and
equals is used to find the entry for the key, if any. These
calls are legal because the where clauses for Key describe
them, and at runtime, the calls will invoke the corresponding
operations of the actual parameter type being used.

A class need not implement an entire parameterized in-
terface; instead, it can implement a particular instantiation,
as shown in these examples:

class BigMap[Value] implements Map[long,Value] ...
class SortedList char implements SortedList[char] ...

Such specialized implementations can be more efficient than
general ones. For example, one fast implementation of Sort-

edList char uses a fixed-size array of integers, where each
array element counts the number of occurrences of the cor-
responding character.

A parameterized class may have static variables such as
the static variable count in HashMap. Each distinct instan-
tiation of HashMap produces a distinct copy of this vari-
able. For example, HashMap[String, Num] and HashMap[String,

String] have separate count variables, but all instantiations
HashMap[String,Num] share one static variable. In Java, static
initializers of ordinary classes are run when the class is first
used. Similarly, static initializers of an instantiation are run
when the instantiation is first used.

2.7 Optional Methods

In addition to where clauses that apply to an entire interface or
class, it is possible to attach where clauses directly to individ-

135

public class HashMap[Key,Value]
where Key

boolean equals(Key k);
int hashcode();

implements Map[Key,Value]

HashBucket[Key,Value] buckets[]; // the hash array
int sz; // size of the table
static int count 0; // number of hash tables

public HashMap[Key,Value] (int sz) . . . ; count ;
// effects: makes this be a new,
// empty table of size sz.

public Value lookup (Key k) throws not in
HashBucket[Key, Value] b

buckets[k.hashcode() % sz];
while((b ! null) && (!b.key.equals(k)))

b b.next;
if (b null)

throw new not in();
else return b.value;

// other methods go here

class HashBucket[Key,Value]
public Key key;
public Value value;
public HashBucket[Key,Value] next;

Figure 4: Partial implementation of Map

ual methods, a feature originally provided by CLU [L 81].
Any where clause from the header of the class still applies,
but additional methods can be required of the parameter type.
A method that has additional where clauses is called an op-
tional method, because it can be called only when the actual
parameter has the method described by the where clause. If
the parameter does not have the required method, the instan-
tiation does not have the optional method. This condition can
always be checked by the compiler; no extra runtime work
is needed.

Optional methods are handy for constructing generic col-
lection interfaces and classes. For example, a collection
might have an output method that is present only if the ele-
ments have one too, as shown in Figure 5. The implemen-
tation of SortedList.output would use the output method of T

to perform its job. The instantiation SortedList[Num] would
be legal regardless of whether Num has an output method;
however, it would have an output method only if Num had the
method.

CLU also provided the ability to attach additional param-
eters to individual methods; while this functionality is useful
in some cases, it adds substantial complexity to the design
and implementation, so we chose to omit it.

interface SortedList[T]
where T boolean lt (T t);

. . .
void output(OutputStream s)

where T void output (OutputStream s);
// effects: Send a textual representation of this to s.

Figure 5: An optional method

2.8 Alternate Constraint Mechanisms

Although we chose where clauses as the mechanism for
constraining parameterized types, other choices are possi-
ble. We briefly examine some of these choices to show
why they do not work well for extending Java. Further dis-
cussion of constraint mechanisms is available in an earlier
paper [DGLM95].

2.8.1 Procedures

One simple approach is to avoid constraints and instead pass
the needed routines explicitly when objects are created (as
arguments to constructors — and the procedures would be
stored in instance variables so that they would be accessible
to the methods).

Even assuming that first-class procedures exist, passing
procedures to constructors is not a good solution, since it
doesn’t properly reflect the semantics. For example, the
meaning of a map depends very directly on the equality test
used for Key. Two maps that use different notions of key
equality are not really of the same type.

Finally, explicitly passing procedures prevents optimiza-
tion (e.g., inlining) and uses space in each object to store the
procedure.

2.8.2 Interfaces

Since where clauses resemble interfaces, it might seem that
an interface could be used as the constraint; that is, the param-
eter would represent any type that is a subtype of the interface.
The virtue of this approach is that some constraints can be
expressed using the subtype notion that already exists; sev-
eral languages have taken this approach [Mey88, MMPN93,
S 86].

For example, we might try to write
interface SortedList[T] where T extends Ordered

. . .

interface Ordered
boolean lt(Ordered x);

The problem with this approach is that it cannot express con-
straints (such as lt) that mention the type parameter [DGLM95].

136

Because “lt” is a binary method, contravariance of arguments
prevents most types from being subtypes of Ordered.

Note also that interfaces cannot express constructor and
static method constraints, which are both possible with where
clauses.

2.8.3 Parameterized Interfaces

To address some weaknesses of interfaces, parameterized
interfaces can be used instead. This approach, related to F-
bounded polymorphism [CCH 89], is used by some other
statically-typed programming languages [KLMM94, OL92,
Omo93]. In these schemes, the contravariance problem is
avoided by adding parameters to the constraint interface.
For example, the SortedList example would look as follows:

interface SortedList[T] where T extends Ordered[T]
. . .

interface Ordered[X]
boolean lt (X x);
boolean equals (X x);

With this interface, any type T whose method signatures are
compatible with Ordered[T] will also satisfy the constraint in
its where clause form.

However, using parameterized interfaces as constraints
does not work well in a language like Java, which has explic-
itly declared subtype relationships. For a type to be usable
as a parameter argument to SortedList Member, it must declare
its relationship to Ordered and every other appropriate con-
straining interface. There will be many interfaces such as
Ordered, each with its own combination of methods. In a
large system, there may even be duplicate interfaces used as
constraints. Every class will have to declare a multitude of
interfaces that it satisfies.

Further, the need for a constraint may only be known
later, because new parameterized classes (and constraints)
can be added to the system. Existing types cannot be used as
parameters because they do not declare their satisfaction of
the new constraint. Sather [Omo93] addresses this problem
by allowing new subtype declarations to be added to the
system at any time. For example, after SortedList Member is
written, any users who wish to use SortedList Member[Num]

could add the following additional declaration:

class Num implements Ordered[Num];

This additional language extension seems likely to be prob-
lematic in a dynamically-loaded system like Java, where the
full type hierarchy is not available.

If parameterized interfaces are used to constrain parame-
ters, the subtype hierarchy is apt to become extremely com-
plex as the system grows. The extra subtype relations do not
serve any ordinary object-oriented purpose, since the con-
straint types are unlikely to be used other than as constraints.

The number of subtype relations will be roughly proportional
to the number of parameterized types and to the total number
of types in the system. In most implementations of object-
oriented systems, the resulting complex type hierarchy has a
significant performance impact.

We might consider removing the requirement for an ex-
plicit subtype declaration. In this approach, the parameter
matches the interfaces if its method signatures are compat-
ible with the interface. In this case, a constraint interface
no longer functions as an real interface, as there is probably
no object providing the interface. Essentially, it becomes a
clumsy way of bundling where clauses together.

A separate interface to constrain parameters might seem
to offer economy of expression in some cases: one interface
can be used to constrain several different parameterized defi-
nitions, rather than restating the where clauses for each defi-
nition. CLU [L 81] has a construct called a typeset that was
provided for just this purpose. Yet, our experience with CLU
is that typesets are almost never used — primarily because
most constraints are very short (just one or two methods).
Defining a separate interface just isn’t worth the time.

3 Virtual Machine Extensions

In this section we discuss the implementation issues that arise
in adding parameterized types to Java. We largely ignore the
issue of compiling the extended Java language described in
Section 2, since there are many languages with paramet-
ric polymorphism [MTH90, LCD 94, S 86]. Instead, we
focus on what is new: extensions to the bytecodes of the
Java Virtual Machine (JVM) that support parametric poly-
morphism, and the effect of these extensions on both the
bytecode verifier and interpreter.

Extensions to the JVM are not required. Without JVM
extensions, however, there are two options for implemen-
tation, both of which have some performance problems, as
discussed in Section 3.1. For this reason, we have chosen to
extend the virtual machine.

The Java compiler generates .class files, containing code
in a bytecode format, along with other information needed
to interpret and verify the code. The format of a .class file
is described by the JVM specification [LY96]. We extended
the JVM in a backwards-compatible way, as described in
Section 3.2, so existing binaries can run without modifica-
tion. The extended virtual machine supports not only the
extended Java described in Section 2, but also could be used
as a target architecture for other languages with subtyping or
parametric polymorphism.

We show how to verify the extended bytecodes in Sec-
tion 3.3 and how to interpret them in Section 3.4. Our im-
plementation technique requires little duplication of infor-
mation for each instantiation; in particular, bytecodes and
global constants are not duplicated.

137

The extended bytecode interpreter has been implemented,
showing that parametric polymorphism can be easily added
to Java while preserving verification and speeding up some
code. Code that does not use parametric polymorphism suf-
fers little performance penalty. Performance results are given
in Section 3.5.

3.1 Parameterization without JVM Extensions

There are two reasonable ways to implement parameterized
types in Java without extending the virtual machine. We will
briefly sketch these approaches, though we did not implement
them because of their performance problems.

The most obvious implementation is to treat each instan-
tiation of a parameterized class or interface as producing a
separate class or interface. Each instantiation of a parameter-
ized class has its own .class file that must be separately loaded
into the interpreter and verified for correctness. In essence,
the parameterized code is recompiled for each distinct set
of parameters. This technique is similar to the template im-
plementation used by most C++ compilers, which leads to
substantial code blowup. It differs from the C++ approach in
that the where clauses guarantee successful recompilation.

An alternative strategy produces code that is generic
across all instantiations: the compiler can generate byte-
codes for parameterized classes as though all parameters are
of class Object. When compiling code that uses a parameter-
ized class, the compiler generates runtime casts as appropri-
ate. Because the compiler has type checked the code, all the
runtime casts necessarily succeed, but the performance is the
same as for old-style Java code that manipulates variables of
type Object and performs explicit casts.

In this scheme, invocation of where-routines is complex.
Each object of a parameterized class contains a pointer to
a separate object that bundles up the appropriate where-
routines for the instantiation, presenting them as methods.
The compiler translates a where-routine invocation to an in-
vocation of the corresponding method of this where-routine
object. The where-routine object is installed in the object of a
parameterized class by passing it as a hidden, extra argument
to class constructors. The advantage of this technique over
the previous one is that only the code of these where-routine
objects is duplicated for each instantiation; most of the code
of a parameterized class is shared for all instantiations.

This approach takes extra space in each object to point to
the where-routine objects, and also adds the overhead of run-
time casts. Gratuitous runtime casts occur at calls to methods
of the parameterized class, and also within the methods of
the where-routine objects. In addition, the already-noticeable
cost of runtime casts can be expected to increase as more so-
phisticated interpreters and native code compilers are used.
Native code compilation seems likely to improve simple op-
erations like arithmetic and method invocation more than
runtime casts, so the casts will become relatively more ex-

aload 2 // push b on stack
getfield Field HashBucket[Key,Value].key #0;
aload 3 // push k on stack
invokewhere Where Key.equals(#0;)Z // call equals

Figure 6: Calling b.key.equals(k)

pensive. Therefore, in our implementation, we extended the
bytecodes to express parameterization directly.

3.2 Bytecode Extensions

The most visible change to the virtual machine is the addition
of two new opcodes (named invokewhere and invokestaticwhere)
that support invocation of the methods that correspond to the
where clauses. They provide invocation of normal and static
methods, respectively. Constructors are treated as normal
methods. For example, the expression b.key.equals(k) in Fig-
ure 4 is implemented using invokewhere, as shown in Figure 6.

Other minor changes were made to the format of a .class

file, which supply the bytecode verifier with enough added
information to directly verify parameterized code. We ex-
tended the encoding of type signatures to capture instantia-
tion and formal parameter types, and added information to
describe the parameters and where clauses of the class. Fig-
ure 6 shows one example of the extended type signatures:
the signature for equals includes a “#0;”, which represents the
first formal parameter type (Key) of the current class. (The Z

indicates that the return type of equals is boolean.)

3.3 Verifier Extensions

The JVM bytecodes are an instruction set that can be stat-
ically type checked. For example, bytecodes that invoke
methods explicitly declare the expected argument and result
types. The state in the execution model is stored in a set
of local variables and on a stack. The types of each stor-
age location can be determined by straightforward dataflow
analysis that infers types for each stack entry and each local
variable slot, at each point in the program.

It is important that extensions for parameterized types not
remove the ability to statically type check bytecodes. The
standard Java bytecode verifier works by verifying one class
at a time [Yel95]. A call to a method of another class is
checked using a declaration of the signature of that method,
which is inserted in the .class file by the compiler. When
the other class is loaded dynamically, these declarations are
checked to ensure that they match the actual class signature.

Our extensions to the JVM preserve this efficient model
of verification. The code of a parameterized or non-param-
eterized class is verified only once, in isolation from other
classes, thus verifying it for all legal instantiations of the
code. An instantiation of a class or interface can be checked
for legality by examining only signature information in the

138

.class file for the parameterized class or interface; examining
the bytecodes in the .class file is unnecessary.

Both the compiler and the verifier perform similar type
checking, treating formal parameter types as ordinary types
with a limited set of allowed operations. The important dif-
ference between the compiler and the verifier is that compiler
variables have declared types, but the verifier must infer their
types. The verifier must assign types to stack locations and
local variable slots which are specific enough that an instruc-
tion can be type checked (e.g., if it invokes a method, the
object must have that method). The assigned types must also
be general enough that they include all possible results of
the preceding instructions. For each instruction, the verifier
records a type with this property, if possible. It uses standard
iterative dataflow analysis techniques either to assign types
to all stack locations for all instructions, or to detect that the
program does not type check.

Because the bytecodes include branch instructions, dif-
ferent instructions may precede the execution of a particular
instruction X. For type safety, the possible types of values
placed on the stack by the preceding instructions must all be
subtypes of the types expected by X. The core of the verifier
performs this operation; it is a procedure to merge a set of
types, producing the most specific supertype, or least upper
bound in the type hierarchy. The dataflow analysis propa-
gates this common supertype through X and sends its results
on to the succeeding instruction(s). The analysis terminates
when the types of all stack locations and local variable slots
are stably assigned.

The primary change to the verifier for parameterized types
is a modification to this merge procedure. To find the lowest
common class in the hierarchy, we walk up the hierarchy
from all the classes to be merged. Each time that a link is
traversed to a superclass, we apply the parameter substitution
that is described by the extends clause of the class definition.
When a common class is reached in the hierarchy, the actual
parameters of the common class must be equal.

Consider the class and interface hierarchy shown in Fig-
ure 7, with the corresponding extends clauses. The union of

and can be conservatively approximated by
successively moving up the tree to find a common node while
substituting parameters. The result is as follows:

So these two types are merged to produce . Similarly,
for and we have

Object

In this case, the merge result is Object, since the param-
eters did not match for . Note that unlike in the non-
parameterized verifier, the lowest common superclass node
is not always sufficient for the merge result,since it may be in-
stantiated differently by the merged types. Finally, consider

Object

B[U] C[K,V] D

A[T]

extends Object

extends
extends

extends int
extends Object

Figure 7: A parameterized class hierarchy

merging int and , which demonstrates that parame-
terized and non-parameterized classes can be merged:

int D A B int

3.4 Runtime Extensions

The Java runtime implements the JVM, providing a bytecode
interpreter and a dynamic loader for Java classes. We have
produced a working prototype interpreter for our extensions
to the JVM. Our design is based upon the Java runtime im-
plementation provided by Sun Microsystems. Our goal in
designing the runtime was to avoid duplication of informa-
tion by the instantiations of a single class, while making the
code run quickly. Minimizing the changes to the existing
interpreter was also an important goal. Non-parameterized
code runs about as fast as in the original interpreter.

3.4.1 Instantiation Pool

Classes are represented in the Java runtime by class objects.
Each class points to its constant pool, which stores auxiliary
constant values that are used by the Java bytecodes. These
constant values include class names, field and method names
and signatures. In this paper, constant pool entries are de-
noted by angle brackets. Figure 6 contains some examples
of this notation, such as the field signature:

Field HashBucket[Key,Value].key #0;

For a parameterized class, some constants differ among
the instantiations. For example, the code that is used by the
where-clause operations differs among instantiations, and
therefore cannot be placed in the constant pool. To resolve
this problem, we create a new class object for each instan-
tiation. Each instantiation class object stores instantiation-
specific information in its instantiation pool (ipool). Values

139

that are constant for all instantiations are still placed in the
constant pool. Ipool indices are constant across all instanti-
ations, but the contents of the corresponding slots differ. An
instantiation object is created by cloning the parameterized
class object and then installing a fresh ipool. The ipool serves
a function similar to the where-routine object of Section 3.1.

For example, the HashMap method lookup from Figure 4
uses the equals operation of Key, so a pointer to the correct
implementation of equals is placed in the ipool of each in-
stantiation. Other examples of values in the ipool include
references to classes that are instantiations that use the pa-
rameters, addresses of static (class) variables, and pointers
to ipools of other instantiations.

This design allows us to duplicate very little data. All
instantiations share the code of the class, the class method
tables, and the constant pool. Only the data that is genuinely
different for the instantiations is placed in the ipool, and there
is exactly one class object for each instantiation being used
in the running system.

3.4.2 Quick Instructions

The Sun implementation of the JVM includes an optimiza-
tion that dynamically modifies the code the first time an
instruction is executed, replacing some ordinary bytecodes
with quick equivalents that do less work [LY96]. These quick
instructions are not part of the bytecode specification and are
not visible outside of the implementation. The non-quick
version of such an instruction performs a one-time initializa-
tion, including dynamic type checking, and then turns itself
into the quick version. Our implementation makes exten-
sive use of this self-modifying code technique in order to
improve performance. A more detailed discussion of the
implementation technique is available [BLM96].

The presence of subclasses makes ipools substantially
more complicated than implementing parametric polymor-
phism for languages like CLU or ML [MTH90], which are
not object-oriented. Consider a method call: the compiler
and dynamic linker cannot tell which piece of code is run, so
they cannot determine the corresponding ipool to use, either.
The proper ipool to use for the call is not known until the
actual call, and must be determined from the object on which
the method is being invoked (the method receiver). The
object has a pointer to its instantiation class object, which
contains the ipool for the methods of that class. Since the
method may be inherited from another class, an additional
indirection is required to obtain the correct ipool.

Our implementation technique resembles an earlier ap-
proach [DGLM95], but extended to provide support for static
methods, static variables, and dynamic type discrimination.
It requires few changes to the existing Java interpreter, and
is also applicable to compiled machine code1.

1Suitably extended, the earlier approach probably produces faster machine code.

3.4.3 Primitive Types

Primitive types such as integers can be used as parameter
types under the implementation technique described here.
Most of the primitive types take up the same space in an
object as an object reference. That they are not full-fledged
objects is not a problem for invoking where-routines, since
where-routines are accessed through the ipool rather than
through the object.

Variables whose type is a parameter are treated in the
bytecodes as though they are object references; for example,
the code of Figure 6 will work properly even when the code
is instantiated on Key = int, although an aload instruction is
used in this case to access an integer. Other bytecodes such
as putfield and getfield do not distinguish between references
and primitive values, and do not create a problem.

The same code cannot support instantiation on long and
double, since these data values do not occupy the same space
as an object reference. The best way to handle large primitive
types such as long and double is probably to rewrite instan-
tiated code when those types are used as actual parameters.
Note that the specialized instantiations might not even have
the same memory layout, since instance variables of type
long will take up more space than other parameter types. The
only problem with this technique is that the specialized in-
stantiations for double and long would not share code with the
other instantiations of the same class, which would all use
the same bytecodes.

3.5 Performance Results

We performed a few simple benchmarks to investigate the
performance of our extended interpreter. These results must
be considered preliminary, since we have not tuned our in-
terpreter performance. Also, since the Java interpreter we
were modifying runs at only a fraction of the speed of ma-
chine code, these results cannot be definitive. However, the
results suggest that parameterized code adds little overhead
to Java and offers performance improvements when its use
is appropriate.

The results of our benchmarks are shown in Figures 8,
10, and 11. The benchmarks were run several times, so
measurement variation is smaller than the significant digits
shown. All run times are in seconds.

First, we confirmed that our extended interpreter did not
significantly slow the execution of ordinary unparameterized
code, by running the Java compiler javac (itself a large Java
program) on both interpreters. As shown in Figure 8, the
extended interpreter runs only 2% slower than the original
interpreter on non-parameterized code.

We also ran some small benchmarks to compare the speed
of parameterized and non-parameterized code,using a simple
parameterized collection class and some non-parameterized
equivalents. In these comparisons, the code was almost iden-

140

Original interpreter: 8.5
Extended interpreter: 8.7

Figure 8: Java Compiler Speed (in seconds)

Cell[Element] c new Cell[Element]();
c.add(new Element());
for (i 0; i 1000000; i)

Element t c.get();
t.do method();

Figure 9: Micro-benchmark code

tical, except for changes in type declarations and a dynamic
cast. The code used repeatedly extracts an object from a pa-
rameterized collection and invokes a method on that object,
as shown in Figure 9.

In the first micro-benchmark, we compared the perfor-
mance of the parameterized class Cell[T] to a hard-wired Ele-

mentCell class, which can only contain objects of type Element.
Both of these classes represent a simple collection that con-
tains only one element. Using this simple collection isolates
the performance effects that we want to measure. The hard-
wired class, which is less generally useful, will obviously run
faster. But as Figure 10 shows, there is only a 4% penalty
for running parameterized code.

In the second micro-benchmark, we compared the param-
eterized class to the same collection class where the types of
the components are all Object — the option for old-style
Java code that the existing Java utility classes mostly follow.
This version of the collection class gives up some static type
checking, and also requires that the programmer write an ex-
plicit type cast when extracting values from the collection (in
order to call do method). Figure 10 shows that for our bench-
mark, this approach is 17% slower than using parameterized
types.

In the third micro-benchmark, we compared the speed
of invoking where-routines (with the invokewhere bytecode),
ordinary methods (with invokevirtual), and interface methods
(with invokeinterface). Our test program intensively called
these respective bytecodes. The results are shown in Fig-
ure 11. In our results, all three method invocation paths
are within 6% of each other. This experiment represented a
best case for invokeinterface, since its inline caching worked
perfectly.

Although these performance results are produced by mod-
ifying an interpreter, we believe that the advantages of the

Parameterized: 13.3
Hard-Wired Types: 12.8
Using Object: 15.5

Figure 10: Collection Class Results

invokewhere 22.8
invokevirtual 21.9
invokeinterface 23.3

Figure 11: Invocation Speed

extended bytecodes and of parameterized code will only in-
crease with compiled machine code, since the interpreter
tends to add a constant overhead to all operations. The slight
overhead of Figure 8 is not intrinsic to parameterized code
and can be eliminated with more careful implementation.
The advantage of parameterized code shown in Figure 10
will be more dramatic, particularly since the cost of the run-
time cast from Object will be relatively more expensive than
method invocation.

4 Interaction of Parameterization with Java

This section discusses some ways in which the addition of
parameterization to Java interacts with Java features.

4.1 Primitive Types

In order for primitive types such as int to satisfy where
clauses, it is necessary for them to have methods. There-
fore, we have assumed that they do indeed have methods
corresponding to the usual infix notation, at least for the
purpose of matches where clauses.

In addition, it is important to use common naming con-
ventions for the methods of the primitive types. The reason
for this requirement is that matching in where clauses is based
on method names, and standard naming conventions make
more matches possible.

4.2 Java Arrays

While the current Java language does not support parameteri-
zation of classes or interfaces, there is support for parameter-
ized arrays. Unfortunately, the subtyping rule for Java arrays
is different from the subtyping rule we propose in Section 3
for parameterized classes and interfaces.

The subtyping rule for Java arrays does allow subtypes
that are covariant in the parameter types. If S is a subtype
of T, an array of S (written S[]) is a subtype of an array of T

(T[]). This rule has the consequence that array stores require
a runtime type check, and this check is in fact made by the
Java runtime. For example, consider the following code:

T x ...;
T [] z new S [] (...);
...;
z[i] x;

The assignment (*) is legal because S is a subtype of T

and therefore S [] is a subtype of T []. The assignment (**)

141

is also legal (at compile time) because it is legal to store a
T object into a T []. However, if this store were allowed to
happen, the result would be that an S [] contains an element
whose type is not a subtype of S. Therefore the store cannot
be permitted, and Java prevents it by checking at runtime that
the actual type of the object being stored is a subtype of the
element type of the array2.

The motivation for the Java subtyping rule seems to be
that it is better to check stores at runtime than to copy the
entire array when a conversion from S[] to T[] is desired.
While this may be true for some programs, it is not difficult
to imagine programs in which stores are a dominant cost;
for general parameterized types, it is even easier to imagine
costly situations, since every method that takes an argument
of a parameter type would require the check.

We believe that for general parameterization of classes
and interfaces it is better not to allow covariant-parameter
subtyping. It would be possible to allow such subtyping if
no methods of the supertype take arguments of the parameter
type, but such types are rare. (A more complete discus-
sion of these issues is available [DGLM95].) Furthermore,
covariant-parameter subtyping creates implementation dif-
ficulties for efficient dispatch mechanisms [Str87, Mye95].
We believe that the Java rule for arrays should be changed
so that all parameterized types have the same rule. However,
our design does not require this; different rules can be used
for arrays and for other parameterized types.

4.3 The Java Type Library

Java is being augmented with a library of interfaces and
classes. Already there are several abstractions in the library
that would be more useful if parameterization were available.
Types such as Vector and Enumeration are most naturally writ-
ten as parameterized types, but currently manipulate objects
of type Object instead.

This has two unfortunate consequences:

1. When new elements are added to a vector, or are stored
in the vector, if they are of a primitive type such as int

then it is necessary to to objectify them. For example, int

must be explicitly wrapped in an Integer object to make
it usable as an Object. This wrapping step is awkward
for the programmer and has runtime overhead.

2. Whenever an element is fetched from a Vector or pro-
duced by an Enumeration, it must be explicitly cast from
Object to the expected type. If the element has a prim-
itive type, it also must be unwrapped after the cast,
adding even more cost and coding complexity.

2The check can be avoided if the compiler can figure out what is going
on at compile time, or if T has no subtypes. Both primitive types and final
classes satisfy this latter property, but Sun’s current Java interpreter only
removes the type check for the primitive type case.

Both problems are ameliorated by parameterized types.
When elements are added, there is no need to objectify them,
and when they are retrieved from the collection, there is no
need for the expensive runtime cast or unwrapping.

5 Conclusions

Java offers the real possibility that most programs can be
written in a type-safe language. However, for Java to be
broadly useful, it needs to have more expressive power than
it does at present.

This paper addresses one of the areas where more power
is needed. It extends Java with a mechanism for parametric
polymorphism, which allows the definition and implemen-
tation of generic abstractions. The paper gives a complete
design for the extended language. The proposed extension is
small and conservative and the paper discusses the rationale
for many of our decisions. The extension does have some
impact on other parts of Java, especially Java arrays, and the
Java class library.

The paper also explains how to implement the extensions.
We first sketched two designs that do not change the JVM, but
sacrifice some space or time performance. Our implementa-
tion avoids these performance problems. We had three main
goals: to allow all instantiations to share the same bytecodes
(avoiding code blowup), to have good performance when
using parameterized code, and to have little impact on the
performance of code that does not use parameterization.

The implementation discussed in Section 3 meets these
goals. In that section, we described some small extensions to
the virtual machine specification that are needed to support
parameterized abstractions; we also described the designs of
the bytecode verifier and interpreter, and the runtime struc-
tures they rely on.

Preliminary performance results from our implementa-
tion of the extended bytecode interpreter show roughly a
2% penalty for the presence of parameterized code, but a
speedup for parameterized code of 17%, by eliminating run-
time checks. We expect that some simple performance tuning
can improve these results.

The appendices that follow present a more detailed spec-
ification of our extensions to the Java language and to the
Java virtual machine.

Parameterized abstractions are not the only extension
needed to make Java into a convenient general purpose pro-
gramming language. First-class procedures and iterators
would also be valuable extensions to the language. However,
we believe that parameterized types are the most important
feature currently missing from Java.

Acknowledgements

We would like to thank Kavita Bala, Bill Joy, Matt Kennel,
and the reviewers for their helpful comments.

142

A Java Grammar Extensions

This appendix presents the full syntax for our extension to
Java, and discusses some issues of the semantics that were
not discussed earlier. Appendix B provides the details of the
extensions to the Java Virtual Machine that support paramet-
ric polymorphism.

In the syntax below, we use the brackets [and] when zero
or one occurrence of the construct is allowed (i.e., when the
construct is optional). We have not attempted to give a full
syntax for Java, but rather we just focus on the parts that
are affected by the addition of parameterization. Capitalized
non-terminals are defined by the Java language grammar
[Sun95a] and are not repeated here.

A.1 Interfaces

An interface definition can be parameterized by using the
following syntax:

interface InterfaceModifiers interface idn

[params] where

ExtendsInterfaces InterfaceBody

params idn , idn *

where where constraint , constraint *

constraint idn [<whereDecl> ;]*

whereDecl methodSig constructorSig

methodSig static ResultType

MethodDeclarator Throws

constructorSig ConstructorDeclarator Throws

The params clause lists one or more formal parameter
names, each of which stands for a type in the parameterized
definition. The where clause lists constraints on the param-
eters. Each constraint identifies the parameter being con-
strained; the idn in the constraint must be one of those listed
in the params. It then identifies the methods/constructors that
that parameter must have. For a method it gives the name,
and the types of its arguments and results; it also indicates
whether the method is static or not. For a constructor, it lists
the types of the arguments. The type names introduced in
the params clause can be used as types in the remainder of
the interface, including the ExtendsInterfaces clause.

A.2 Instantiation

The form of an instantiation is

instantiationType idn [actualParams]

where

actualParams Type , Type *

The idn in the instantiation must name a parameterized
class or interface. The number of actualParams must match
the number given in that parameterized definition, and each
Type must satisfy the constraints for the corresponding formal
parameter of that definition.

Satisfying a constraint means: (1) if the constraint in-
dicates a constructor is required, the actual type must have
a constructor with a signature that is compatible with that
given in the constraint; (2) if the constraint indicates that a
method is required, the actual type must have a method of
that name with a signature that is compatible with that given
in the constraint; if the constraint indicates the method is
static, the matching method in the actual type must also be
static, and otherwise it must not be static.

A.3 Classes

A class definition can be parameterized by using the follow-
ing syntax:

ClassDeclaration ClassModifiers class idn

[params] where Super

Interfaces ClassBody

As was the case for interfaces, the params of the class can
be used as types within the class. Also, code in the ClassBody
can call the routines introduced in the where clause. Such a
call is legal provided the routine being called is introduced
in the where clause and has a signature that matches the use.
The syntax of the call depends on what kind of routine is
being called: for an ordinary method, the syntax x.m() is
used to call the method; for a constructor, the syntax new T()

is used; and for a static method the syntax T.m() is used.

A.4 Methods

Methods can have where clauses of their own:

MethodDeclaration MethodModifiers ResultType

MethodDeclarator Throws

where MethodBody

The where clause can constrain one of the type parameters
of the containing interface or type. Calls to methods or
constructors of formal parameter types are legal within the
method body if they match constraints for the parameter that
are given either in the where clauses of the containing class
or interface, or in the where clauses of the method.

143

B JVM Extensions

This appendix describes the extensions to the Java Virtual
Machine that support parametric polymorphism. In the
following specification, we include section numbers from
the original JVM specification [Sun95b] to indicate where
changes are being made.

(1.4) Objects whose type is statically understood to be a
parameter type are always stored as 32-bit quantities on the
stack and in local variables. The aload and astore bytecodes
are used to access these variables, effectively treating them
as references. The types double and long cannot be used as
type parameters at the VM level. The Java compiler will
either automatically wrap these data into Double and Long

objects respectively, or automatically instantiate such classes,
rewriting the code appropriately. The only exception to this
rule is arrays, where longs and doubles are stored in packed
form.

(2.1) The class file format is extended to contain the following
additional field:

parameter info parameters;

where parameter info is defined as follows:

parameter info
u2 parameters count;
u2 parameter names[parameters count];

u2 where count;
u2 where clauses[where count];

The array parameter names contains constant pool indices
for the names of the formal parameters. These name are
provided for debugging and disassembly purposes, as in Fig-
ure 6.

The field where clauses contains constant pool indices
for entries of type CONSTANT WhereRef, which describe one
where clause of a indicated parameter as specified below. Its
signature may mention the parameter types.

(2.2) Signature specifications include the following addi-
tional options:

M fullclassname [fieldtype ...]

This signature denotes the instantiation of the parameter-
ized class or interface using the types inside the brackets.
The number of parameters much match the number of pa-
rameters in the class, and the parameter types must have the
required methods.

parameterindex ;

This signature denotes one of the parameter types of the
current class or method. The parameter index is written as
an integer in ASCII form.

Note that these new grammar productions inductively pre-
serve the property that the end of a typespec can be deter-
mined as you read the characters from left to right.

(2.3.1) For example, the string “MMutex[[I]” represents the
type Mutex[int[]], and inside a class Set[Object], the string “[#0;”
represents an array of Object and “MHashMap[#0;I]” repre-
sents a HashMap[Object, int].

(2.3.2) The new constant pool entries CONSTANT LargeMethodref

and CONSTANT LargeFieldRef are similar to CONSTANT Methodref

and CONSTANT FieldRef except that that they take up two con-
stant pool entries. Their format in the class file is exactly the
same as CONSTANT Methodref. They are used to refer to static
methods and fields of parameterized classes.

A LargeMethodref must be used if a method is used by a
static or non-virtual method call, and the actual implementa-
tion of the method is defined in a parameterized class. This
condition can be checked by the compiler. For example, if
the class signature described by constant pool[class index] is
an entry of type CONSTANT Class that describes an instanti-
ation, and the method is static, then a LargeMethodref must
be used. However, a LargeMethodref is required even when
constant pool[class index] is not an instantiation, but it inherits
its implementation of the method from a parameterized class.
The extra constant-pool entry is used to find the correct ipool
for the static method code.

A LargeFieldref must be used for all accesses to a static
field of a parameterized class. The extra constant-pool entry
contains an ipool index; at that index, the ipool contains a
pointer to the static variable storage. This mechanism allows
each distinct instantiation of a parameterized class to have its
own copy of the static variable.

(2.3.8) CONSTANT WhereRef is a new kind of constant pool
entry, used to denote an operation of a parameter type. It
corresponds to a where clause.

CONSTANT WhereRef
u1 tag;
u2 param index;
u2 name and type index;
u2 access flags;

The tag will have the value CONSTANT WhereRef. The
param index is the index of the parameter type in the class
or the method that calls this parameter operation. The
name and type index describes the signature and name of the
operation, as described in the where clause. It must match the
signature in parameters[param index].where clauses[k].methods,
above.

The access flags field may only have ACC STATIC set of the
various possible flags.

(2.5) The structure method info, which describes one method
of the current class, is extended to contain the following field:

parameter info parameters;

which describes any new parameters that apply within the
scope of the method and where clauses on both these param-
eters and on any existing parameters. The parameters and

144

where clauses of the class also apply to the method. New
parameters are indexed sequentially following the indices of
the class parameters, so different methods that have their own
additional type parameters may use the same indices. How-
ever, there is no ambiguity in any given scope about which
parameter corresponds to an index. The current prototype
does not implement additional method parameters.

(3.15) Two new bytecodes are added to the virtual machine
for invoking where-clause operations. New bytecodes are
not strictly necessary, since the attributes of the constant pool
entry serve to disambiguate the various invocation bytecodes.
We added new bytecodes by analogy with existing bytecodes,
and our interpreter does have distinct quick bytecodes.

invokewhere

Invoke an operation of a parameter type.

Syntax:

invokewhere = 186
indexbyte1
indexbyte2

Stack: ..., objectref, [arg1, [arg2 ...]] ...

The index bytes are used to form an index into
the constant pool, which must be an entry of type
CONSTANT WhereRef. This entry is used to deter-
mine which code to run for the method, using in-
formation in the current object to determine what
the parameter type is.

invokestaticwhere

Invoke a static operation of a parameter type.

Syntax:

invokestaticwhere = 187
indexbyte1
indexbyte2

Stack: ..., objectref, [arg1, [arg2 ...]] ...

The index bytes are used to form an index into
the constant pool, which must be an entry of type
CONSTANT WhereRef. This entry is used to deter-
mine which code to run for the method, using in-
formation in the current object to determine what
the parameter type is.

References

[BLM96] Joseph A. Bank, Barbara Liskov, and Andrew C. Myers. Pa-
rameterized types and Java. Technical Memo MIT/LCS/TM-
553, Massachusetts Institute of Technology, 1996.

[Car88] Luca Cardelli. A semantics of multiple inheritance. Informa-
tion and Computation, 76:138–164, 1988. Also in Readings in
Object-Oriented Database Systems, S. Zdonik and D. Maier,
eds., Morgan Kaufmann, 1990.

[CCH 89] Peter Canning, William Cook, Walter Hill, John Mitchell, and
Walter Olthoff. F-bounded polymorphism for object-oriented
programming. In Proceedings of the Conference on Functional
Programming Languages and Computer Architecture, pages
273–280, 1989.

[DGLM95] Mark Day, Robert Gruber, Barbara Liskov, and Andrew C.
Myers. Subtypes vs. where clauses: Constraining parametric
polymorphism. In Proc. of OOPSLA ’95, pages 156–158,
Austin TX, October 1995. ACM SIGPLAN Notices 30(10).

[KLMM94] Dinesh Katiyar, David Luckham, John Mitchell, and Sigurd
Melda. Polymorphism and subtyping in interfaces. ACM SIG-
PLAN Notices, 29(9):22–34, August 1994.

[L 81] B. Liskov et al. CLU reference manual. In Goos and Hartma-
nis, editors, Lecture Notes in Computer Science, volume 114.
Springer-Verlag, Berlin, 1981.

[LCD 94] Barbara Liskov, Dorothy Curtis, Mark Day, Sanjay Ghe-
mawat, Robert Gruber, Paul Johnson, and Andrew C. My-
ers. Theta Reference Manual. Programming Method-
ology Group Memo 88, MIT Laboratory for Computer
Science, Cambridge, MA, February 1994. Available at
http://www.pmg.lcs.mit.edu/papers/thetaref/.

[LY96] T. Lindholm and F. Yellin. The Java Virtual Machine.
Addison-Wesley, Englewood Cliffs, NJ, May 1996.

[Mey88] BertrandMeyer. Object-orientedSoftware Construction. Pren-
tice Hall, New York, 1988.

[MMPN93] O. Lehrmann Madsen, B. Moller-Pedersen, and K. Nygaard.
Object Oriented Programming in the BETA Programming Lan-
guage. Addison-Wesley, June 1993.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Stan-
dard ML. MIT Press, Cambridge, MA, 1990.

[Mye95] Andrew C. Myers. Bidirectional object layout for separate
compilation. In Proc. of OOPSLA ’95, pages 124–139, October
1995. ACM SIGPLAN Notices 30(10).

[Nel91] Greg Nelson, editor. Systems Programming with Modula-3.
Prentice-Hall, 1991.

[OL92] Stephen M. Omohundro and Chu-Cheow Lim. The Sather
language and libraries. Technical Report TR-92-017, Interna-
tional Computer Science Institute, Berkeley, March 1992.

[Omo93] Stephen M. Omohundro. The Sather programming language.
Dr. Dobb’s Journal, 18(11):42–48, October 1993.

[S 86] C. Schaffert et al. An introduction to Trellis/Owl. In Proc. of
OOPSLA ’86, Portland, OR, September 1986.

[Sto87] B. Stoustrup. The C++ Programming Language. Addison-
Wesley, 1987.

[Str87] B. Stroustrup. Multiple inheritance for C++. In Proceedings
of the Spring ’87 European Unix Systems User’s Group Con-
ference, Helsinki, Finland, May 1987.

[Sun95a] Sun Microsystems. Java Language Specification, ver-
sion 1.0 beta edition, October 1995. Available at
ftp://ftp.javasoft.com/docs/javaspec.ps.zip.

[Sun95b] Sun Microsystems. The Java Virtual Machine Specifica-
tion, release 1.0 beta edition, August 1995. Available at
ftp://ftp.javasoft.com/docs/vmspec.ps.zip.

[Yel95] Frank Yellin. Low-level security in Java, December 1995.
Presented at the Fourth International World Wide Web Con-
ference, Dec. 1995.

145

